Search
Full bibliography 151 resources
-
We implement the higher order gyrokinetic theory developed in Dudkovskaia et al (2023 Plasma Phys. Control. Fusion 65 045010), reduced to the limit of , where B 0 is the tokamak equilibrium magnetic field, and B ϑ is its poloidal component, in the local gyrokinetic turbulence code, GS2. The principal motivation for this extension is to quantify the importance of neoclassical flows in...
-
This paper discusses the importance of parallel perturbations of the magnetic-field in gyrokinetic simulations of electromagnetic instabilities and turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak STEP. Previous studies have revealed the presence of unstable hybrid kinetic ballooning modes (hKBMs) and subdominant...
-
In this work, we present first-of-their-kind nonlinear local gyrokinetic (GK) simulations of electromagnetic turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production (STEP). A prior linear analysis in Kennedy et al (2023 Nucl. Fusion 63 126061) reveals the presence of unstable hybrid kinetic...
-
We present herein the results of a linear gyrokinetic analysis of electromagnetic microinstabilites in the conceptual high reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production, https://step.ukaea.uk. We examine a range of flux surfaces between the deep core and the pedestal top for two candidate flat-top operating points of the prototype device. Local linear...
-
First nonlinear gyrokinetic simulations of microtearing modes in the core of a MAST case are performed on two surfaces of the high-collisionality discharge used in Valovič et al (2011 Nucl. Fusion 51 073045) to obtain the favorable energy confinement scaling with collisionality, . On the considered surfaces microtearing modes dominate linearly at binormal length scales of the order of the ion...
-
The analytical theory describing the resonant excitation and coupling of volume and surface fields on the surface of two-dimensional complex electrodynamic structures is presented. The theoretical analysis is valid over a broad frequency spectrum from mm-wave frequencies through THz and even optical frequencies. An experimental study of planar periodic structures has been carried out using a...
-
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand the confinement properties that might be expected in the conceptual design for a high β ST fusion reactor, a 1 GW ST plasma equilibrium was analysed using local linear gyrokinetics to determine the type of...
-
High-power microwave sources are typically relativistic in nature, employing multi-kilo-ampere electron beams that require significant magnetic confinement for efficient operation. As the desired output power increases, so does the complexity, and overall energy requirements, of the source. It can, therefore, be advantageous to consider the use of several, moderate-power, sources operating as...
-
Plasma turbulence plays a key, governing role in determining the spatial-temporal evolution of plasmas in astrophysical, geophysical and laboratory contexts. In particular, turbulence on disparate spatial and temporal scales limits the level of confinement achievable in magnetic confinement fusion experiments and therefore limits the viability of sustainable fusion power 1 . The TDoTP project*...
-
The formation of density corrugation due to zonal flow, so-called zonal staircase, is investigated theoretically, based on the wave-kinetic framework. The wave-kinetic simulation is performed, considering the profile corrugation and the turbulence trapping mechanism, where the profile corrugation changes the growth rate and the dispersion relation of turbulence. The zonal density is generated...
-
Stimulated Brillouin scattering experiments in the ionospheric plasma using a single electromagnetic pump wave have previously been observed to generate an electromagnetic sideband wave, emitted by the plasma, together with an ion- acoustic wave. Here we report results of a controlled, pump and probe beat-wave driven Brillouin scattering experiment, in which an ion-acoustic wave generated by...
-
We present a new theoretical picture of magnetically dominated, decaying turbulence in the absence of a mean magnetic field. With direct numerical simulations, we demonstrate that the rate of turbulent decay is governed by the reconnection of magnetic structures, and not necessarily by ideal dynamics, as has previously been assumed. We obtain predictions for the magnetic-energy-decay laws by...
-
The physics of the tokamak pedestal is still not fully understood, for example there is no fully predictive model for the pedestal height and width. However, the pedestal is key in determining the fusion power for a given scenario. If we can improve our understanding of reactor relevant pedestals we will improve our confidence in designing potential fusion power plants. Work has been carried...
-
The azimuthally rippled cavity for a large-orbit, coharmonic gyro-multiplier, designed to operate at the second and fourth harmonics, at frequencies of 37.5 and 75 GHz, respectively, has been numerically and experimentally confirmed to be insensitive to the polarization of quadrupole, \textTE_2,n -like modes, including the second-harmonic operating mode of the multiplier, a cylindrical...
-
The performance of spherical tokamak reactors depends on plasma β, and an upper limit is set by long-wavelength kinetic ballooning modes (KBMs). We examine how these modes become unstable in spherical-tokamak reactor relevant plasmas, which may contain significant fast-ion pressure. In a series of numerically generated equilibria of increasing β, the KBM becomes unstable at sufficiently high...
Explore
Topic
- Plasma Turbulence & Transport (32)
- Plasma Heating & Waves (24)
- Magnetic Confinement & Tokamaks (23)
- Plasma Instabilities & MHD (23)
- Gyrokinetics & Plasma Simulations (17)
- Plasma Diagnostics & Simulations (12)
- Electromagnetic Instabilities (11)
- Space & Astrophysical Plasmas (7)
- 3D Magnetic Fields & Perturbations (5)
- Laser-Plasma Interactions & Experiments (5)
- Plasma Confinement & Stability (5)
- Edge Plasma & Divertors (5)
Outputs
- Code (10)
-
Conferences
(42)
-
Annual Meeting of the APS Division of Plasma Physics
(6)
-
61st
(3)
- Invited Talks (2)
-
63rd
(3)
- Invited Talks (1)
- Review Talks (1)
-
61st
(3)
-
EPS Conference on Plasma Physics
(2)
- 47th (1)
-
EU-US Task Force
(7)
- 25th (5)
-
27th
(1)
- Invited Talks (1)
-
28th
(1)
- Invited Talks (1)
-
European Fusion Theory
(10)
-
18th
(4)
- Invited Talks (1)
- Oral Presentations (2)
-
19th
(6)
- Invited Talks (1)
- Oral Presentations (4)
-
18th
(4)
-
IOP Annual Plasma Physics
(1)
-
49th
(1)
- Invited Talks (1)
-
49th
(1)
-
JPP Frontiers of Plasma Physics Colloquium
(4)
- Invited Talks (3)
-
Phenomena in Ionized Gases
(1)
-
XXXIV
(1)
- Invited Talks (1)
-
XXXIV
(1)
-
Plasma Physics of the European Physical Society (EPS)
(1)
-
49th
(1)
- Invited Talks (1)
-
49th
(1)
-
Sherwood Fusion Theory
(10)
- Invited Talks (3)
- Oral Presentations (5)
-
Theory of Fusion Plasmas Joint Varenna-Lausanne International
(4)
- Invited Talks (3)
-
US-EU Transport Task Force meeting
(1)
- Invited Talks (1)
-
Annual Meeting of the APS Division of Plasma Physics
(6)
- Data (6)
- Publications (88)
Related work
Tools used by TDoTP
- Code (4)
Resource type
- Conference Paper (34)
- Dataset (6)
- Journal Article (86)
- Preprint (2)
- Presentation (2)
- Software (8)
- Thesis (1)
- Web Page (12)
Publication year
- Between 2000 and 2025 (135)
- Unknown (16)
Resource language
- English (76)