Your search
Results 23 resources
-
We present new results of multi-scale simulations of Langmuir turbulence during heating experiments where a powerful electromagnetic wave is injected into the overhead ionosphere where it excites parametric instabilities leading to turbulence on multiple spatial and temporal scales. The simulations are carried out using a generalized Zakharov model [1, 2] in which the complex phase and...
-
Microtearing instability is one of the major sources of turbulent transport in high-β tokamaks. These modes lead to very localized transport at low-order rational magnetic field lines, and we show that flattening of the local electron temperature gradient at these rational surfaces plays an important role in setting the saturated flux level in microtearing turbulence. This process depends...
-
In magnetic confinement fusion devices, the ratio of the plasma pressure to the magnetic field energy, beta, can become sufficiently large that electromagnetic microinstabilities become unstable, driving turbulence that distorts or reconnects the equilibrium magnetic field. In this paper, a theory is proposed for electromagnetic, electron-driven linear instabilities that have current layers...
-
Linear perturbation theory is used to model the ideal magnetohydrodynamic stability of tokamak equilibria under the application of external 3D magnetic perturbations (Hegna 2014 Phys. Plasmas 21 072502). We use the ELITE code (Wilson et al 2002 Phys. Plasmas 9 1277) to produce both a linear plasma response, as well as the linear axisymmetric toroidal eigenmodes which are used as basis...
-
The high heat fluxes to the divertor during edge localised mode (ELM) instabilities have to be reduced for a sustainable future tokamak reactor. A solution to reduce the heat fluxes could be the Super-X divertor, which will be tested on MAST-U. ELM simulations for MAST-U Super-X tokamak plasmas have been obtained, using JOREK. A factor 10 decrease in the peak heat flux to the outer target and...
-
Nonlinear multiscale gyrokinetic simulations of a Joint European Torus edge pedestal are used to show that electron-temperature-gradient (ETG) turbulence has a rich three-dimensional structure, varying strongly according to the local magnetic-field configuration. In the plane normal to the magnetic field, the steep pedestal electron temperature gradient gives rise to anisotropic turbulence...
-
The work reported in this paper addresses two aspects. In the first part, numerical simulations are conducted to examine the impact of magnetic equilibrium shaping (elongation and triangularity), on both conventional Ion Temperature Gradient (ITG) modes and Short Wavelength ITG modes. This analysis is performed considering the experimental profiles and parameters of the ADITYA-U tokamak,...
-
High-power-density tokamaks offer a potential solution to design cost-effective fusion devices. One way to achieve high power density is to operate at a high ββ\beta value (the ratio of thermal to magnetic pressure), i.e. β∼1β∼1\beta \sim 1. However, a β∼1β∼1\beta \sim 1 state may be unstable to various pressure- and current-driven instabilities or have unfavourable microstability properties....
-
We present herein the results of a linear gyrokinetic analysis of electromagnetic microinstabilites in the conceptual high reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production, https://step.ukaea.uk. We examine a range of flux surfaces between the deep core and the pedestal top for two candidate flat-top operating points of the prototype device. Local linear...
-
First nonlinear gyrokinetic simulations of microtearing modes in the core of a MAST case are performed on two surfaces of the high-collisionality discharge used in Valovič et al (2011 Nucl. Fusion 51 073045) to obtain the favorable energy confinement scaling with collisionality, . On the considered surfaces microtearing modes dominate linearly at binormal length scales of the order of the ion...
-
We present a new theoretical picture of magnetically dominated, decaying turbulence in the absence of a mean magnetic field. With direct numerical simulations, we demonstrate that the rate of turbulent decay is governed by the reconnection of magnetic structures, and not necessarily by ideal dynamics, as has previously been assumed. We obtain predictions for the magnetic-energy-decay laws by...
-
A new drift kinetic theory for the plasma response to the neoclassical tearing mode (NTM) magnetic perturbation is presented. Small magnetic islands of width, (a is the tokamak minor radius) are assumed, retaining the limit w ∼ ρ bi (ρ bi is the ion banana orbit width) to include finite orbit width effects. When collisions are small, the ions/electrons follow streamlines in phase space; for...
-
Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm<1). However, the same...
-
This review puts the developments of the last few years in the context of the canonical time line (Kolmogorov to Iroshnikov-Kraichnan to Goldreich-Sridhar to Boldyrev). It is argued that Beresnyak's objection that Boldyrev's alignment theory violates the RMHD rescaling symmetry can be reconciled with alignment if the latter is understood as an intermittency effect. Boldyrev's scalings,...
-
Microtearing modes have been widely reported as a tearing parity electron temperature gradient driven plasma instability, which leads to fine scale tearing of the magnetic flux surfaces thereby resulting in reconnection of magnetic field lines and formation of magnetic islands. In slab geometry it has previously been shown that the drive mechanism requires a finite collision frequency....
Explore
Topic
Outputs
- Publications (23)
Resource type
- Conference Paper (1)
- Journal Article (21)
- Preprint (1)
Publication year
-
Between 2000 and 2025
(23)
-
Between 2010 and 2019
(8)
- 2019 (8)
- Between 2020 and 2025 (15)
-
Between 2010 and 2019
(8)
Resource language
- English (15)