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Abstract
We have used the local-δ f gyrokinetic code GS2 to perform studies of the effect of
flux-surface shaping on two highly-shaped, low- and high-β JT-60SA-relevant equilibria,
including a successful benchmark with the GKV code. We find that for a high-performance
plasma, i.e. one with high plasma beta and steep pressure gradients, the turbulent outwards
radial fluxes may be reduced by minimizing the elongation. We explain the results as a
competition between the local magnetic shear and finite-Larmor-radius (FLR) stabilization.
Electromagnetic studies indicate that kinetic ballooning modes are stabilized by increased
shaping due to an increased sensitivity to FLR effects, relative to the ion-temperature-gradient
instability. Nevertheless, at high enough β, increased elongation degrades the local magnetic
shear stabilization that enables access to the region of ballooning second-stability.

Keywords: shaping, gyrokinetics, turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the performance-limiting factors on tokamak exper-
iments is the significant turbulence-dominated radial trans-
port of heat, momentum and particles from the core plasma
out to the edge. One method of affecting this turbulent
transport is to change the shape of the axisymmetric flux-
surfaces traced out by the confining magnetic field; this has
been validated both experimentally and in numerical simula-
tions [1–8]. Flux-surface shape is often characterised by the
elongation κ and triangularity δ, where κ(r) ≡ Z(r, θmax)/r
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and δ(r) ≡ [R0(r) − R(r, θmax)]/r, where R(r, θ) is the plasma
major radius, θ is the poloidal angle, Z(r, θ) is the vertical
distance above the midplane, r ≡ [R(r, 0) − R(r, π)]/2 is the
plasma half-diameter at the flux-surface midplane, R0(r) ≡
[R(r, 0) + R(r, π)]/2 is the major radius of the flux-surface
center and θmax is the poloidal angle of the maximum Z. A
labelled example flux-surface shape is shown in figure 1. The
above expressions are valid for the up-down symmetric plas-
mas studied in this work, although similar expressions can
be used to account for up–down asymmetry. Plasma shap-
ing is known to affect the stability of magnetohydrodynamic
(MHD) modes. Specifically, increased elongation and triangu-
larity increase the threshold ‘Troyon’ plasma β above which
dangerous (e.g. external kink-ballooning) MHD instabilities
are triggered: βTroyon = βNIp/(aBref ), where β is the ratio of
thermal to magnetic pressure, βN � 2% is an empirically cal-
culated scaling factor, a is the minor radius of the last closed
flux-surface (LCFS) and Bref is the reference magnetic field,
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Figure 1. A typical flux-surface shape, with r, R0 and θmax labelled.
We define the midplane as the horizontal plane that intersects the
widest point of the flux-surface; θ = 0 coincides with the midplane
on the outboard side.

defined as the on-axis toroidal field [9]. The Troyon beta
limit increases linearly with plasma current Ip which, for fixed
safety factor q, is increased by elongation and triangularity.
Shaping can however have other important consequences, par-
ticularly for vertical displacement events (VDE) which are
associated with disruptions. Whilst increased elongation can
ameliorate the aforementioned MHD instabilities, more severe
controls for VDE are then required. This necessitates the care-
ful investigation of shaping effects from both MHD/disruption
and transport perspectives.

The impact of shaping on transport due to micro-
instabilities has been less-thoroughly studied, and those stud-
ies that have been performed have focussed only on a relatively
small region of the vast multi-dimensional shaping param-
eter space. Despite this, increased elongation is generally
thought to be stabilizing [1–4], whereas triangularity can have
varying effects. Both the TCV and DIII-D experiments have
reported that negative triangularity yields improved perfor-
mance, allowing performance comparable to H-mode whilst
maintaining L-mode edge profiles [5–7]. Meanwhile, [2] has
reported a dependence on elongation of the effect of triangular-
ity, being stabilizing at large κ and somewhat destabilizing at
moderate κ. There are various explanations for these observed
effects on the turbulence; some suggest that flux-surface shap-
ing modifies locally the driving gradients [8], whilst others
point to its effect on local magnetic shear [10].

In this work we extend an earlier modelling study by Nakata
[11] studying two JT-60SA-relevant magnetic equilibria [12].
Following a benchmark between the local, δ f -gyrokinetic
codes GKV [13, 14] and GS2, we present a study on the effects
of triangularity and elongation in these two equilibria, both
with and without electromagnetic effects. In section 2, we
present how shaping influences turbulence in the gyrokinetic
framework, as a combination of the local-magnetic-shear sta-
bilization of the toroidal drive, as well as finite-Larmor-radius
(FLR) stabilization. In section 3, we present the results of

the benchmark, followed by electrostatic linear and nonlin-
ear shaping scans in {δ,κ}. We use our model to explain the
qualitative trends observed in these scans, including the novel
result that increased elongation can be destabilizing. Finally,
we present linear electromagnetic shaping scans, showing how
kinetic-ballooning-modes (KBMs) react differently to flux-
surface shape. The work is then summarized in section 4.

2. Model

To understand how plasma shaping affects the local, δ f
gyrokinetic framework in which GS2 works, we write the
Fourier-analysed (perpendicular to the equilibrium magnetic
field) collisionless gyrokinetic equation and field equations as:

∂hs

∂t
+

[
v‖b · ∇+ ik⊥ · VD,s

]
hs + {χ, hs}

=

[
ZseF0,s

Ts

∂χ

∂t
− Vχ · ∇F0,s

]
; (1)

0 =
∑

s

Zse
∫

d3v

(
hsJ0(us) −

Zseδφ
Ts

F0,s(r)

)
; (2)

|k⊥|2δA‖ =
4π
c

∑
s

Zse
∫

d3vv‖hsJ0(us); (3)

|k⊥|δB‖ = −4π
c

∑
s

Zse
∫

d3v|v⊥|hsJ1(us), (4)

where hs is the non-adiabatic part of the fluctuating distribu-
tion function for a species labelled s (note that we have omitted
the wavenumber index on fluctuating quantities to simplify
notation), v is the particle velocity, Jn is the nth-order Bessel
function of the first kind, Zse is the charge, Ts is the tempera-
ture, F0,s is the assumed-Maxwellian equilibrium distribution
function,

χ ≡ J0(us)(δφ− v‖δA‖) + J1(us)
|v⊥|
|k⊥|

δB‖ (5)

is the gyro-averaged gyrokinetic potential, δφ is the fluctuating
electrostatic potential, δA‖ and δB‖ are the parallel components
of the magnetic vector potential and field, respectively, {. . .}
indicates the Fourier-transformed Poisson bracket,

VD,s ≡
b
Ωs

×
[(

v2
‖ +

v2
⊥

2

)
∇B
B

+ v2
‖

4πp′

B2
∇r

]
(6)

contains the non-E × B magnetic drifts, ′ indicates an r-
derivative, p is the pressure, Ωs is the Larmor frequency,
Vχ ≡ i(cχ/B2)B × k⊥ is the drift velocity due to the inter-
action between the equilibrium magnetic field and the fluctu-
ating electric and magnetic potentials, us ≡ |k⊥||v⊥|/Ωs and
k⊥ ≡ kψ∇ψ + kα̃∇α̃ where ψ is the poloidal magnetic flux,
used as a radial coordinate, and α̃ is the field-line label.

One way that the flux-surface shape enters these equations
is via ∇ψ and ∇α̃ in k⊥. We note that the magnetic field
strength and parallel streaming terms are also affected by the
flux surface shape, but this effect is often small in the inverse
aspect ratio ε ≡ r/R0. The perpendicular wavevector k⊥ can
strengthen (weaken) the toroidal drive term if (mis)aligned
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Figure 2. The effect of magnetic shear on a ballooning-type
perturbation. The instability is driven strongly at the outboard
midplane where VD,s · k⊥ is maximal. The perturbations are
advected along the field lines to a different poloidal (and toroidal)
position. With moderate positive magnetic shear, the outboard side
lags behind the inboard side poloidally, so the perturbation retains
some major-radial extent and remains strongly driven. For negative
magnetic shear, the inboard side lags and the perturbation gains
more vertical extent, thus coupling more weakly to the
predominantly vertical magnetic drifts. A similar argument is used
to explain why large positive values of magnetic shear have a
stabilizing effect.

with VD,s; this is closely linked to local-shear stabilization as
shown in figure 2. It can also provide FLR stabilization via
the gyro-average,manifested as the Bessel functions. To calcu-
late ∇ψ and ∇α̃, we work in toroidal {r, θ, ζ} and cylindrical
{R, ζ, Z} coordinates, where r, θ, Z and R retain their previous
definitions and ζ is the toroidal angle. By using the Clebsch
(B = ∇α̃×∇ψ) and axisymmetric (B = I∇ζ +∇ζ ×∇ψ)
representations of the equilibrium magnetic field, one can
write an expression for α̃:

α̃ = ζ −
∫ θ

0
dθ̂ q̃, (7)

where q̃(r, θ) ≡ B · ∇ζ/B · ∇θ is the local safety factor. It fol-
lows that ∇α̃ contains the local magnetic shear s̃ ≡ r(log q̃)′

and can be written as

∇˜
α = ∇ζ − ˜

q∇θ −∇r
∫ θ

0
d

̂

θ
˜
q′. (8)

As shown in figure 2, the local magnetic shear affects the
toroidal drive by shearing turbulent structures towards or away
from the major radial direction in which they are most strongly
driven [15, 16]. To obtain expressions for the local magnetic
shear as well as the other geometric coefficients appearing in
the gyrokinetic system of equations, one can specify R(r, θ)
and Z(r, θ) for a given flux-surface. A typical parametrization,
and indeed the one we use here, is the Miller parametrization
[17] which uses nine parameters to specify the poloidal cross
section:

R(r, θ) = R0(r) + r cos [θ + (arcsin δ(r)) sin θ] (9)

Z(r, θ) = κ(r)r sin θ, (10)

where δ is the triangularity and κ is the elongation. Only
first derivatives of r-dependent quantities are specified, and
the Grad–Shafranov equation [18, 19] is used to ensure that
the equilibrium locally satisfies MHD force balance. Conse-
quently, β′ ≡ β(log p)′ must also be specified. More details

on how to obtain expressions for s̃ and |k⊥|2 are provided in
appendix A.

3. Results

Following the work of Nakata [11], we present the results of
a benchmark between GS2 and the analogous code GKV, in
figure 3. The benchmark was performed at three radial (ρ, the
normalized toroidal magnetic flux) positions with adiabatic
electrons and a single ion species, using Miller parametriza-
tions of two numerical equilibria: one low-β(1.5%) and one
high-β(3.7%) [20]. The flux surface shapes and equilibrium
parameters are given in figure 4 and table 1. There is reasonable
agreement between the linear growth rates γ and real frequen-
cies ω calculated by the two codes. There is a small discrep-
ancy that was also observed in a previous benchmark between
the two codes [21]—this may be due to algorithmic differences
that affect the numerical dissipation. Despite this, the agree-
ment was sufficient that we extended the study beyond the
benchmark for both equilibria by adding kinetic electrons and
then electromagnetic perturbations; these results are shown in
figure 5. The addition of kinetic electrons approximately dou-
bles all linear growth rates and destabilizes trapped electron
modes for kyρref �1, where the normalized poloidal wavenum-
ber ky is related to kα̃ via ky = kα̃Bref/ψ

′. Adding full δB per-
turbations destabilizes KBMs for both equilibria, though they
are more potent in the high-β case, being the dominant mode
for kyρref > 1 at all the simulated radii. These modes are identi-
fied as KBMs due a step change in the real frequency. Studies
were also performed including either δB‖ or δA‖. With only
δB‖ compressive magnetic fluctuations, the results were almost
identical to the electrostatic simulations. With only field line
bending (δA‖), a KBM-like mode appeared at low ky, but with a
growth rate approximately 50% smaller than the full δB fluctu-
ations. In both equilibria, the electromagnetic effects stabilize
ITG.

3.1. Electrostatic, linear shaping scans

To guide us towards the flux-surface shape that minimizes tur-
bulent heat flux, electrostatic scans were performed in the tri-
angularity and elongation Miller parameters for the ρ = 0.5
equilibria. Simultaneously scaling δ′ and κ′ had no impact on
the qualitative trends observed; the effect on the maximum lin-
ear growth rates was less than 10% for the majority of the
{δ,κ} space, but reached ∼25% at maximum triangularity. It
was therefore deemed unnecessary to simultaneously scale δ′

and κ′ in any of the simulations. These electrostatic simula-
tions are equivalent to β � 0 electromagnetic simulations. We
choose to fix β ′ ≡ β(log p)′, which corresponds to modifying
(log p)′ to compensate for the ‘reduction’ in β. As such, until
electromagnetic effects are included, we refer to the equilib-
ria as low- and high-(log p)′. The results of the scan are shown
in figure 6(a)). For the low-(log p)′ equilibrium, increasing the
elongation has an almost universal stabilizing effect, whereas
the triangularity is destabilizing at low elongation and stabi-
lizing at high elongation. The result is that maximal shaping
minimizes the linear ITG instability. The maximum growth

3
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Figure 3. Benchmark showing normalized real-frequency ω and growth-rate γ spectra at three different radial positions for the (a) low-β
and (b) high-β equilibria. The GS2 variables have been renormalized to their GKV equivalents: Rax is the major radius of the magnetic axis,
vth,ref is the reference thermal velocity and ρref is the reference Larmor radius.

Figure 4. Surfaces of constant magnetic flux for the (a) low- and (b)
high-β equilibria. White contours, labelled by their values of ρ,
denote surfaces used in the simulations.

rates for the high-(log p)′ equilibrium are, for all {δ,κ}, less
than for the low-(log p)′ equilibrium. Additionally, a moderate
increase in elongation is destabilizing even up to δ ∼ 0.2, with
the result that circular flux surfaces are as stable as those with
maximal shaping.

Using figures 6(b) and (c) we show that the trends in
figure 6(a) can be explained via a combination of local mag-
netic shear and FLR stabilization. To quantify the effect of
local magnetic shear, we use its value at the outboard mid-
plane where the ballooning modes are driven most strongly.
Meanwhile, we quantify the FLR stabilization via the integral∫ π/2
−π/2 |k⊥|2dθ, which gives a measure of how much the mode is

restricted over the bad-curvature region which extends approx-
imately from−π/2 � θ � π/2. For κ � 1, the local magnetic

Table 1. Equilibrium parameters for the two equilibria. ε ≡ r/R0 is
the inverse-aspect ratio, ŝ is the magnetic shear, Δ ≡ R′

0 is the
Shafranov shift and α ≡ −β(log p)′q2R0 where q is the safety
factor. Te = T i for both equilibria.

β Low (1.5%) High (3.7%)

ρ 0.3 0.5 0.75 0.3 0.5 0.75
ε 0.10 0.17 0.25 0.12 0.21 0.30
q 1.85 2.02 2.66 1.37 1.55 2.23
ŝ 0.09 0.34 1.44 0.12 0.48 1.96
α 0.48 0.83 1.19 0.62 1.13 1.66
−Δ 0.07 0.11 0.17 0.08 0.14 0.21
κ 1.50 1.52 1.58 1.49 1.52 1.61
κ′ 0.04 0.10 0.33 0.05 0.14 0.47
δ 0.08 0.14 0.23 0.10 0.17 0.29
δ′ 0.26 0.29 0.48 0.31 0.36 0.66
(log Ts)′ 2.33 2.42 2.72 2.69 2.84 3.33
(log ns)′ 0.78 0.81 0.91 0.90 0.95 1.11

shear is rapidly made less negative by increasing triangular-
ity. In contrast, |k⊥| changes relatively slowly with triangular-
ity, so the overall effect is a strong destabilization. At larger
κ � 2, the local shear is insensitive to changes in triangular-
ity, so the increased |k⊥|2 gives a net stabilization with δ. The
effect of elongation on s̃ changes with triangularity and α. At
large δ, increased elongation makes the local shear more neg-
ative whilst also increasing |k⊥|2; these two effects work in
tandem to provide strong stabilization. In figure 7 we show that
for δ � 0.2, increased elongation reduces the local shear for
small α � 0.5, but increases it for larger α�0.5. Both equi-
libria have sufficient α for increased elongation to increase
s̃, although the high-(log p)′ equilibria has higher α and so
s̃ is sufficiently sensitive to changes in κ that it outcompetes
the increased FLR stabilization afforded by higher κ. In con-
trast, the low-(log p)′ equilibrium, with lower α, is dominated
by the stabilizing effect of k2

⊥-stabilization. In appendix A,
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Figure 5. Linear growth-rate and real-frequency spectra for the two equilibria, showing the effects of adding kinetic electrons and
electromagnetic perturbations. This was performed at all three radii of (a) ρ = 0.3, (b) ρ = 0.5 and (c) ρ = 0.75. a is the half-diameter of
the LCFS at the midplane.

a simplified analytical model is developed; this gives quali-
tatively identical results to what is observed in figure 7. We
note that quasilinear heat-flux estimates were also calculated.
These predicted the low-(log p)′ equilibrium to have a lower
heat flux than the high-(log p)′ case, but this was not borne out
in nonlinear simulations.

3.2. Electrostatic, nonlinear shaping scans

We also present nonlinear electrostatic scans in elongation for
both equilibria in figure 8. All simulations were carried out
with 32 parallel grid points, 22 ky values, 256 kx values, with

Δkx � Δky = 0.047. The polar velocity space grid contained
16 radial energy grid points, 20 passing pitch angles and up to
33 trapped pitch angles [22, 23]. The trends observed in heat
flux are similar to those of the linear growth rates: at δ = 0,
increased elongation monotonically stabilizes the low-(log p)′

equilibrium whilst the high-(log p)′ case is destabilized up to
κ � 1.6. We note that the different κ-position of the maxi-
mum (cf κ � 1.2 in the linear results) is the main discrepancy
between the linear and nonlinear results. At δ = 0.5, increased
elongation monotonically stabilizes the high-(log p)′ equilib-
rium. These results again suggest that maximal shaping min-
imizes turbulent transport for a low-β plasma with moderate

5
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Figure 6. Scans in triangularity and elongation for two equilibria, showing (a) linear growth rates, (b) local magnetic shear at the outboard
midplane, (c) integral of |k⊥|2 over −π/2 � θ � π/2. The black crosses indicate the nominal shapes. We note that the differences in local
shear and

∫
|k⊥|2 between the two equilibria are small. This is because whilst the low-(log p)′ equilibrium has a normalized pressure gradient

almost three times smaller than the high-(log p)′ one, the increased q and R0 result in a comparatively similar value of α, which governs the
overall effect of pressure gradient on the geometrical coefficients. The colours have been chosen such that blue indicates increased stability.

pressure gradient. However, in a low-β plasma with steep pres-
sure gradient, similar transport levels could be achieved with
circular flux-surfaces as with maximal shaping.

The fraction of energy in the zonal flow is also plotted in
figure 8(b). To calculate this, we take the ratio of the following
proxies for the zonal flow energy:

WZF ∝
〈∑

kx

(
1 − Γkx ,ky=0(θ)

) ∣∣δφkx ,ky=0(θ)
∣∣2

〉
θ

,

and the total energy contained in both turbulence and zonal
flows:

Wtot ∝
〈∑

kx ,ky

(
1 − Γkx ,ky (θ)

) ∣∣δφkx ,ky (θ)
∣∣2

〉
θ

,

where Γkx ,ky (θ) denotes the gamma function evaluated at
k⊥(kx , ky, θ)ρref and 〈. . .〉θ indicates an average over poloidal
angle [24]. For the low-(log p)′ equilibrium at δ = 0 and the
high-(log p)′ at δ = 0.5 the zonal energy fraction increases
monotonically with elongation, reflecting the decreased trans-
port. Similarly, for the high-(log p)′, δ = 0 simulation the min-
imum zonal energy fraction coincides with the maximum heat

flux. These results suggest that the effect of elongation on tur-
bulent transport is closely linked to its effect on the relative
strength of the zonal flow.

3.3. Electromagnetic shaping scans

In figure 5 electromagnetic effects are observed to have a sig-
nificant effect on the linear growth-rate spectra. We therefore
include electromagnetic effects in the shaping studies. Figure 9
shows the dependence of the maximum linear growth rates on
triangularity and elongation for both equilibria. In the high-β
equilibrium, a KBM is excited for all {δ,κ}, and the growth
rates are everywhere higher than the electrostatic case. Further-
more, the effect of plasma shaping becomes uniformly stabi-
lizing. The nominal low-β equilibrium is on the threshold of
KBM stability, as indicated by a step change in the wavenum-
ber and real frequency of the fastest growing mode either side
of the green line in figure 9(a). In contrast to the electrostatic
results, the low-β equilibrium has everywhere lower linear
growth rates than the high-β case, and triangularity is no longer
destabilizing at low elongation.

These results can be explained by an increased sensitivity
of the KBM to FLR stabilization, compared to the electrostatic
ITG. The local magnetic shear is most sensitive to triangularity

6
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Figure 7. Electrostatic scans in α and elongation for the high-(log p)′ equilibrium at nominal triangularity (δ = 0.17), showing (a) linear
growth rates maximised over ky, (b) local magnetic shear at the outboard midplane, (c) integral of |k⊥|2 over −π/2 � θ � π/2. The green
and black crosses indicate the nominal parameters for the low- and high-β equilibria, respectively. The scan in α was performed at fixed q
and R0, so it corresponds to a scan in (log p)′. The nominal {α,κ} value for the low-(log p)′ equilibrium is also shown by a green cross; a
similar scan with the low-(log p)′ equilibrium parameters gives qualitatively similar results.

Figure 8. (a) Ion heat flux and (b) fraction of zonal energy vs elongation for each equilibrium. The dotted line indicates the nominal
elongation.

at κ = 1, and only here is it able to compete with the |k⊥|2
stabilization, giving the almost constant linear growth rates at
κ = 1. For all other elongations, the KBM is not sufficiently
sensitive to s̃ and is thus stabilized by |k⊥|2 which increases
with both δ and κ. As mentioned, the KBM is the dominant
mode for all {δ,κ} at high β, but for the low-β case it becomes
sub-dominant for strong shaping.

In figure 10 we show scans in β at fixed (log p)′. As β

increases, s̃(θ = 0) is reduced via the corresponding increase
in α ∝ β. Two such scans are shown, at nominal and 1.5 times
nominal (log p)′. At low β, we observe the β-stabilization of
ITG modes, and note that the KBM threshold β increases
with elongation due to FLR stabilization, consistent with
figure 9. We also observe the persistence of KBMs (albeit with

significantly reduced linear growth rates) into the region of
second MHD stability, as previously reported in [25], for suf-
ficiently high β approaching 10%. The reduction in growth
rates in this region can be attributed to the increasing local-
shear-stabilization due to larger α ∝ β. As κ is increased in
the region of second stability, the local-shear stabilization is
reduced rapidly enough that it outcompetes FLR stabilization.
This has the effect of removing the second stability afforded
by increased β.

To summarize, the differences in the results obtained from
the nominal- and increased-(log p)′ scans are as follows: the
growth rates are everywhere lower in the increased-(log p)′

case, and the KBM reacts more strongly to increased (log p)′

compared to the ITG. This is because the absolute change in

7
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Figure 9. Electromagnetic scans in triangularity and elongation for the (a) low-β and (b) high-β equilibria, showing maximum linear
growth rates. Below the green line, the fastest growing mode is the KBM. All modes in the high-β case are KBMs. The crosses indicate the
nominal shape.

Figure 10. Electromagnetic scans in β and elongation for the high-β equilibrium, with (log p)′ held fixed at (a) nominal and (b) 1.5 times
nominal. The crosses indicates the nominal {β,κ}, whilst the lines are shown to guide the eye to approximate bounds for the region of KBM
instability (they have not been determined via MHD calculations). We reiterate that increased β leads to more negative local magnetic shear.

α scales linearly with β, so the local magnetic shear is less
reduced at low-β. In the increased-(log p)′ case, the second
stability region is accessed at lower β. This in turn lowers the
threshold β at which κ becomes destabilizing. This suggests
that to minimize turbulent transport in a high-performance
plasma with steep pressure gradients and high β, the flux
surface elongation should be minimized.

4. Summary

In this work we have performed a successful benchmark
between the local δ f -gyrokinetic codes GS2 and GKV for two
equilibria with significant shaping effects. We have also per-
formed, with the inclusion of electrons as a kinetic species,
linear scans in the flux-surface shaping parameters δ and κ
to study the effect on turbulent transport. We find that for
low-β equilibria, triangularity is stabilizing at high elonga-
tion, and vice versa. We also find the novel result that elon-
gations of κ ∼ 1.5 can be destabilizing in regions of steep
normalized pressure gradient. This trend in linear growth rate
is also observed in the nonlinear heat-flux. We explain these
results as a competition between the effects of shaping on the

local magnetic shear and on FLR stabilization. Electromag-
netic scans were also performed, and KBMs were destabilized
for both equilibria. Our results show that for the nominal equi-
librium parameters, the KBM is stabilized monotonically by
increased shaping; we infer from this that for the KBM, FLR
stabilization is stronger relative to the local magnetic shear.
Scans in {β,κ} show that at sufficiently high β, the local mag-
netic shear becomes sensitive enough to κ that it can compete
with FLR stabilization and compromise second-stability. The
threshold β at which this occurs decreases with increased nor-
malized pressure gradient. Therefore, we suggest that for a
high-performance plasma, i.e. one with high-β and steep pres-
sure gradients, the turbulent outwards radial fluxes may be
minimized by reducing elongation as much as possible. Con-
versely, for a moderate β plasma, we would suggest maximal
elongation to FLR-stabilize the KBMs.
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Appendix A. Calculation of the local magnetic
shear and perpendicular wavenumber

In this section we flesh out the details of how to determine
the effect of shaping parameters on stability. As an example,
we show an analytic calculation of the effect of elongation to
leading order in ε 
 1. As discussed in section 2, this involves
determining the local magnetic shear and the perpendicular
wavenumber.

The local safety factor q̃ is the ratio of the toroidal to
poloidal component of the magnetic field:

q̃ ≡ B · ∇ζ

B · ∇θ
=

IJr

R2ψ′ , (11)

where we used the axisymmetric form of the magnetic field:

B = I∇ζ +∇ζ ×∇ψ (12)

and defined the Jacobian JX for the transformation between
{R, ζ, Z}→ {X, θ, ζ} where X is any flux-surface label. This
also allows us to define ψ′ in terms of the safety factor q:

ψ′ =
I

2πq

∫ 2π

0
dθ

Jr

R2
. (13)

Therefore, the local magnetic shear is

s̃ ≡ r
q̃′

q̃
= r

(
I′

I
+

J
Jr

− 2
R′

R

)
, (14)

where J ≡ J ′
r − Jrψ

′′/ψ′. To evaluate this, we use the
Grad–Shafranov equation:

R2∇ ·
(
∇ψ

R2

)
= − II′ + 4πR2 p′

ψ′ . (15)

By expanding the divergence and substituting explicit forms
for ∇r and ∇θ using a prescribed R(r, θ) and Z(r, θ), we arrive
at the following expression for J/Jr:

J
Jr

=
R2

J 2
r |∇r|2

[
2

(
R′θRθ + Z′θZθ

)

− Jr
∂

∂θ

(
1
Jr

[
R′Rθ + Z′Zθ

])]
+

II′ + 4πR2 p′

|∇ψ|2 ,

(16)

where superscript θ indicates a θ-derivative. To get an expres-
sion for I′/I, we take the r-derivative of equation (13) and
move all terms under the integral:

0 =

∫ 2π

0
dθ

[
J

R2
+

Jr

R2

(
I′

I
− q′

q
− 2R′

R

)]
. (17)

This can be used in conjunction with equation (16) integrated
over θ to give an expression for I′:

I′

I

∫ 2π

0
dθ

Jr

R2

(
1 +

I2

|∇ψ|2

)

=

∫ 2π

0
dθ

Jr

R2

(
q′

q
+

2R′

R
− 4πR2 p′

|∇ψ|2

)

+

∫ 2π

0

dθ
|∇r|2

(
∂

∂θ

(
1
Jr

[
R′Rθ + Z′Zθ

])

− 2
Jr

(
R′θRθ + Z′θZθ

))
. (18)

With these expressions, one can generate expressions for s̃ and
thus |k⊥|2.

A.1. Analytical expressions for concentric elliptical
flux-surfaces

We next use a simplified Miller parametrization that includes
only elongation to determine the effect of elongating a circular
plasma:

R(r, θ) = R0 + r cos θ (19)

Z(r, θ) = κ(r)r sin θ. (20)

We choose to order κ′ ∼ κ/R0–this means that κ′ does not
enter to leading order in small inverse aspect ratio (ε 
 1):

Z′(r, θ) = κ sin θ + κ′εR0 sin θ = κ sin θ +O(ε). (21)

We proceed in this limit to determine s̃ and |k⊥|2, beginning
with the following quantities:

Jr(r, θ) = R
(
R′Zθ − RθZ′) = κrR (22)

|∇r|2 ≡ R2

J 2
r

((
Rθ

)2
+

(
Zθ

)2
)
=

1 + (κ2 − 1)cos2 θ

κ2
(23)

|∇θ|2 ≡ R2

J 2
r

((
R′)2

+
(
Z′)2

)
=

1 + (κ2 − 1)sin2 θ

r2κ2
(24)

∇r · ∇θ ≡ − R2

J 2
r

(
R′Rθ + Z′Zθ

)
= − (κ2 − 1) sin θ cos θ

rκ2

(25)

ψ′ =
Iκε
q

+O(Iε3). (26)

To determine I′/I, we calculate each of the three integrals that
appear in equation (18) separately:

∫ 2π

0
dθ

Jr

R2

(
1 +

I2

|∇ψ|2

)
=

2πq2

ε
+O(ε) (27)

∫ 2π

0
dθ

Jr

R2

(
q′

q
+

2R′

R
− 4πR2 p′

|∇ψ|2

)

=
2π
εR0

{
κεŝ +

α

2

}
+O(ε/R0) (28)
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Figure 11. Profiles calculated from our simple analytical model that includes just elongation and pressure-gradient effects in the
small-inverse-aspect-ratio limit. We show (a) the local magnetic shear at the outboard midplane and (b) the integral of |k⊥|2 over
−π/2 � θ � π/2, as a function of α and κ.

∫ 2π

0

dθ
|∇r|2

(
∂

∂θ

(
1
Jr

[
R′Rθ + Z′Zθ

])

− 2
Jr

(
R′θRθ + Z′θZθ

))
= −2π

R0

(
κ2 + 1

)
+O(ε/R0).

(29)

Combining these, we find that

I′

I
q2

ε
R0 = κ

(
ŝ − κ2 + 1

κ

)
+

α

2
1
ε
+O(ε), (30)

where we will find that the leading order piece cancels with a
term in J/Jr, so we retain the O(1) terms. Using this, we find:

J
Jr

=
1
εR0

{
κŝ − α cos θ

1 + (κ2 − 1)cos2 θ

}
.

Comparing the size of the terms that comprise s̃, the largest is
J/Jr. Then, to leading order, we find

s̃ =
κŝ − α cos θ

1 + (κ2 − 1)cos2 θ
. (31)

Now we can use s̃ to find ∇α̃ and thus |k⊥|2:

∫ θ

0
dθ̂ q̃′ =

q
r

[̂sϑ− αΛ] , (32)

where

Λ(θ,κ) ≡ 1

2κ
√
κ2 − 1

log

(
1 +

√
1 − κ−2 sin θ

1 −
√

1 − κ−2 sin θ

)
(33)

and

ϑ(θ,κ) ≡ arctan

(
tan θ

κ

)
, (34)

which gives:

|k⊥|2 ∝ (̂s(ϑ− θ0) − αΛ)2 (
1 + (κ2 − 1)cos2 θ

)
+ 1 + (κ2 − 1)sin2 θ

− 2 (̂s(ϑ− θ0) − αΛ) (κ2 − 1) sin θ cos θ +O(ε), (35)

where θ0 ≡ kx/(̂sky). These expressions reduce to the typ-
ical ŝ − α results when κ = 1, since Λ(θ, 1) = sin θ and
ϑ(θ, 1) = θ. In figure 11 we plot for this model the local
shear at the outboard midplane, and the integral of |k⊥|2
over the outboard side, as a function of α and κ. Comparing
figures 11(a) and (b) to figures 7(b) and (c), we see good agree-
ment despite ignoring the effects of triangularity, Shafranov
shift and finite-aspect-ratio.
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