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Abstract

®

CrossMark

We implement the higher order gyrokinetic theory developed in Dudkovskaia et al

(2023 Plasma Phys. Control. Fusion 65 045010), reduced to the limit of By /By < 1, where By
is the tokamak equilibrium magnetic field, and By is its poloidal component, in the local
gyrokinetic turbulence code, GS2. The principal motivation for this extension is to quantify the
importance of neoclassical flows in electromagnetic gyrokinetics, with a particular interest in
sharp pressure gradient regions where the bootstrap current becomes dominant. To incorporate
neoclassical equilibrium physics, GS2 is coupled to NEO, a multi-species drift kinetic solver.
It is found that the regions where microinstabilities are most likely to be influenced by
neoclassical equilibrium effects are in a pedestal plasma and a spherical tokamak core plasma.

Keywords: higher-order gyrokinetic theory, tokamak plasma, neoclassical flows,

bootstrap current, tokamak pedestal

(Some figures may appear in colour only in the online journal)

1. Introduction

Gyrokinetic theory is typically employed to describe turbu-
lent fluctuations in tokamak plasmas. Yet, simulation codes are
based on a variety of alternative formulations. Most generally,
there are full-f formulations [1, 2] where the equilibrium
and fluctuation scales are merged. More common are Jf-type
formulations [3-6] where one separates the total distribution
function into an equilibrium part, F, that evolves on slow
transport timescales and has length scales of order the system
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size, and a fluctuating part, Jf, which has a short perpendicu-
lar wavelength and Jf < F. More recently, hybrid Jf schemes
have been proposed [7, 8] that treat the radial profile variation
perturbatively.

Conventional local gyrokinetics [3] typically adopt a Max-
wellian equilibrium, which does not include neoclassical flow
and current density. There are a number of extended models
that capture deviations from Maxwellian [4, 5, 9-11], deriv-
ing the gyrokinetic equation in response to this extended non-
Maxwellian equilibrium. However, the majority of these mod-
els are valid in certain simplified cases: these typically are (1)
By/By < 1, where By is the equilibrium magnetic field and
By is its poloidal component [4, 5, 10], (2) rare collisions
compared to particle parallel streaming along the equilibrium
magnetic field lines and/or the characteristic drift frequency,
and (3) electrostatic fluctuations. When applied to conven-
tional tokamaks, By /By ~ ¢/q < 1 is a relatively reasonable

© 2023 The Author(s). Published by IOP Publishing Ltd
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approximation: (1) the inverse aspect ratio € < 1 in the core
plasma and (2) the safety factor, ¢, is large at the plasma edge.
However, By /By < 1 can be violated in spherical tokamaks
(STs). Note that, as discussed in [ 12], the approach of [4, 5, 10]
is based on a difference between the two expansion paramet-
ers: A = p/Land § = py/Linthelimitof By/By < 1, where p
is the particle Larmor radius, py ~ pBo/By is the particle pol-
oidal Larmor radius, and L is the system size. References [4,
5, 10] expand the equilibrium distribution function in powers
of ¢ (which is also equivalent to retaining the O(Ap) correc-
tions in the magnetic moment, p) up to O(AJFy), neglect-
ing the O(A2F)) corrections, where Fyy is Maxwellian. The
By/By < 1 assumption is relaxed in [12].

While there are a number of higher order gyrokinetic
theories, only a few have been implemented in codes. For
example, [13—15] extend GS2 (a nonlinear local gyrokinetic
code designed to study low frequency drift wave turbulence
in magnetised plasmas) [16—-18] to incorporate higher order
gyrokinetics based on the diamagnetic/neoclassical correc-
tions to Maxwellian equilibria. Hornsby et al [19] provides a
similar implementation of neoclassical effects but in GKW (a
nonlinear gyrokinetic flux tube code). All of them employ the
By /By < 1 approximation and are electrostatic. Pusztai et al
[20] extends electrostatic low flow gyrokinetics of [10] to a
simplified, low beta electromagnetic case, and implements this
in GS2 to study high mode number kink modes.

In the present paper, we also exploit the limit of By/By <
1. This assumption is convenient for numerical implement-
ation and testing and is sufficient to quantify the impact of
higher order gyrokinetic corrections associated with neoclas-
sical equilibrium current density effects. We implement the
theory developed in [12] (reduced to the limit of small By
for simplicity) in GS2. In contrast to the works listed above,
(1) our implementation is electromagnetic, (2) it allows for a
finite/high beta plasma and (3) it also allows for finite colli-
sions in the equilibrium solution. To ensure consistency, we
also extend the GS2 Maxwell’s field equations accordingly.

The paper is structured as follows: in the following section
we introduce the tokamak geometry and coordinate system we
employ. In section 3 we describe the calculation of the equilib-
rium distribution function, retaining the higher order, neoclas-
sical corrections. The corresponding generalised gyrokinetic-
Maxwell system is presented in section 4. To quantify the
importance of these neoclassical corrections, we adopt a local
(flux tube) approximation in section 4.1. The impact of the
neoclassical corrections is quantified in section 5, and the
obtained results are discussed in section 6.

2. Magnetic geometry and coordinate system

We employ an axisymmetric tokamak geometry with an equi-
librium magnetic field written as:

Bo=1(1)Vp+Vpx Vi, (1)

where ¢ is the toroidal angle and v is the poloidal flux coordin-
ate. Constant v surfaces are assumed to form a set of nested

toroidal magnetic flux surfaces, within which the equilibrium
magnetic field lines lie. The function I = I(3)), which is con-
stant on these flux surfaces, is related to the toroidal com-
ponent of the magnetic field, I = RB,,, where R is the major
radius coordinate measuring the distance from the axis of
symmetry.

To describe the distribution of ions and electrons in a
magnetised plasma, we introduce a velocity coordinate sys-
tem resolved parallel and perpendicular to the equilibrium
magnetic field:

V=u-+s, @)

with
u=ub=(V-b)b, 3)

and
s = s(eycosa +e3sina) = s§. “)

Here « is the gyrophase angle, and b, e, and e are the unit
vectors defined as
=B

vy

B By x Viﬁ
RBy’

b e3 = s
RByBy

€

with b = e, X e3 and By = |By|. The gyro-radius vector is then

_bxs

P = p(escosa — eysina) = pp, (5)

We

where w, = eZBy/m is the cyclotron frequency, eZ and m are
the particle charge and mass, respectively; p = s/w.. A con-
venient representation of the velocity coordinates employs «
together with the magnetic moment per unit mass, p, and
the total particle energy per unit mass, U: p = s>/2B, and
U= uBy+u*/2+eZ®y/m = V2?2 + eZ®Dy/m, where P is
the fotal equilibrium electrostatic potential and V is the particle
speed.

We work with spatial coordinates which describe the posi-
tion of a particle’s guiding centre. This guiding centre coordin-
ate, X, is related to the actual position of the particle, x, as it
gyrates around the magnetic field lines as

X=x—-p. (6)

3. Neoclassical equilibrium solution

To distinguish equilibrium and fluctuating quantities, we sep-
arate the particle distribution function, f, into an equilibrium
piece, F, and fluctuating piece, (Sf:3

f=F+0f (N

3 The particle species index, j, is neglected for simplicity, and introduced only
when it is necessary to distinguish ions and electrons.
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Here 0f /F ~ A < 1, where A = p/L with the gyro-radius, p,
and L characterising the system size. F here is the solution of
the conventional drift kinetic equation [21, 22] that is generally
obtained by expanding the kinetic equation in powers of A and
subsequent gyro-averaging in the absence of the finite Larmor
orbit width effects, i.e. (¥ (x,t))i ~{xX,)+(p-V) X>§ ~
X, where x = x (x,#) represents any scalar equilibrium field
and (.. >§ =) §...da. The leading order equilibrium
distribution function, Fy, is provided by a Maxwellian solution
that does not carry flows, while the first order solution, F,
contains the physics of the neoclassical flows. In particular,
F is the solution of a constraint equation for the second order
equilibrium distribution function, F:

u-VF1+VD'VFO:C(F1), (8)

where V), is the drift velocity and C on the right hand side of
equation (8) is the gyro-averaged collision operator. Note that
the spatial differential operators are defined at fixed U, . and

a, unless stated otherwise. If written in terms of V, u and «,
equation (8) becomes

OFy

BT =C(F1).

€))

4
u-VF +Vp VF, —;—V(u—FVD) Vo, 0

A detailed recursive derivation of the drift kinetic equation
can be found in [21], and its numerical solution with the
Fokker—Planck collisions consistent with the Poisson equation
is described in detail in [22-24]. To ensure ordering con-
sistency, we must also retain certain terms in the gyro-angle
dependent piece of the second order equilibrium distribution
function, F», that can be expressed in terms of Fy and F; (see
equation (28) of [12]). As discussed in [12], retaining the gyro-
phase dependent piece of F in the limit of By /By < 1 is equi-
valent to expanding F around p:

- _OF
F(X,U,p+ f1) =F(X,U,u)+u@(X,U,u), (10)

where the correction i = O(Apu) (e.g. see [25] or equations
(23) and (27) of [4]); this is the approach adopted in [4, 26,
27] etc.

In the present paper, we employ two models for F;. The
first model is employed for comparative purposes: it adopts
a large aspect ratio tokamak approximation and provides
F| as the solution of the constraint equation based on the
momentum-conserving, pitch angle scattering collision oper-
ator (see appendix A). In the second model, F is provided
by NEO (a multi-species drift kinetic solver). Specifically,
it is found as the solution of the first order drift kinetic
— Poisson system (i.e. equation (9) for each particle spe-
cies, coupled by the Poisson equation) with the full lin-
earised Fokker—Planck collisions [22-24]. The latter allows
consideration of a generalised, finite aspect ratio tokamak
geometry.

4. Generalised gyrokinetic equation for fluctuations

of provides the fluctuating response to the fluctuating elec-
tromagnetic fields. We separate Jf into an extended adiabatic
piece and a resonant piece

o OF uA| oF
5f_ — — = A +8 (11)
8U xu Bo o XU
to find
O wX)+ Vo) 2 ()
ot P ax
_ eZd, .xOF| 1 ._ , .x OF
=~ a " agy| T (VX e gy
12)
z ohn oF| ¢
- ud-V)y+Vp VL]< B onl,
eZ, ,x OF
o O Ve Vo VT )
in the absence of nonlinear effects*. Here ®' = O(A®,) is

the perturbed electrostatic potential. AI’| =A'-bwithA’ being
the perturbed vector potential. F in equations (11) and (12)
is provided by Fy + F, as described in the previous section.
The gyro-phase angle dependent piece of F, is expressed
in terms of Fy and F; and incorporated in equation (12).
The generalised perturbed potential is defined as x' = &' —
V-A’. A detailed derivation of equation (12) can be found
in [12]. Equation (12) captures the neoclassical equilibrium
physics while ensuring consistent ordering, provided F; =
O(0Fy), where 6 = py /L. Indeed, in addition to conventional
gyrokinetics [3], the right hand side of equation (12) retains
the O(AS %Fo) corrections associated with the neoclassical
effects, i.e. neoclassical flows and bootstrap currents. Note that
the focus of this paper is to quantify the impact of these neo-
classical corrections, and therefore the O(AZ%FO) terms have
been neglected in equation (12), which is reasonable, provided
By /By < 1. Generally, all the second order terms must be
retained for consistency — these are provided by equation (57)
of [12]. Collisions are described by the operator C on the left
hand side of equation (12).

In the limit of rare collisions in the equilibrium solu-
tion, equation (12) can be further simplified. Indeed, differ-
entiating equation (8) with respect to p and U, to leading
order in collisions, the last two lines of equation (12) can be
rewritten as:

aF u oF
:—wi[beInBo]-%, (13)

providing the O(Az%Fo) contribution, and therefore
equation (12) reduces to:

4 At O(Aé%Fo), the nonlinear effects are provided by Bio (Vx'x b)); . %
added to the right hand side of equation (12).
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() + Vo) 55— (c(3)
eZ 0 x OF

——— — / PR
ATy

08
o 14
X op (14)

O

1 , x OF eZ x’
e (TN B G = SO+ Vo (3

U
(b-V)y is the parallel streaming operator in guiding centre coordinates. In equations (12) and (14), it is related to b - V via
[12]

(B-9) (@' ~V-A")) = (b-V) (@'~ V-A")]

# ([ x5l 69004 5 091 b x5]] - T (@' V-4))

We

X

«

_<[[(b-V)b] .s+“2gi(b-VlnBo)} A|/>z

+ <; (b-VInBy) (A" -s)+ul(b-V)b]-A| — ([(b-V)es]-e2)[b x 5] Ai> ,

whereA| =A' — A|b is the component of the perturbed vec-
tor potential perpendicular to By. Equation (14) matches the
linearised Frieman—Chen gyrokinetics of [5]°, as well as the
‘generalised’ gyrokinetics of [4]. In the absence of electro-
magnetic effects, equation (14) also matches the electrostatic
‘low flow’ gyrokinetics employed in [10, 27, 28]. It is there-
fore apparent that [4, 5] etc are only consistent, provided (1)
p < py (which is equivalent to assuming By /By < 1) and (2)
collisions are rare (the particle collision frequency is much
smaller than the particle parallel streaming along the equilib-
rium magnetic field lines). Note, equation (14) can be further
reduced to the standard gyrokinetic equation:

OH OH

X
S+ W (X) + Vi) - 52— (CEN
_ eZ 0 ,XaF 1 , x OF
= ma gy H+BO<VX “ba ox
where g is related to H via
e/ X 8F
=H— ={y
g ) Bodii |y

Conventional gyrokinetics based on a Maxwellian equilib-
rium does not allow for the neoclassical, parallel current dens-
ity effects to be incorporated in the solution, and is therefore
inconsistent with the ideal magneto-hydrodynamic (MHD)
model. Indeed, by constructing the force balance equation
from Maxwellian based gyrokinetics, one would recover (1)
the electric component of the Lorentz force associated with
the time variation of the perturbed magnetic field and (2) the

5 Th~is can be demonstrated, provided (1) b - V is written in terms of X and
(2) B = Boju of [5] is substituted explicitly in equation (45) of [5].

X

s5)

(03

pressure gradient related piece in the force balance equation
(see appendix B). However, the magnetic component of the
Lorentz force and hence the parallel current density gradi-
ent effects require the physics of F; (F carries neoclas-
sical equilibrium flows) and F, (the gyro-angle dependent
piece of F, is required to ensure consistent ordering and,
being expressed in terms of F, also contributes to flows in
equations (12) and (14)). A simplified case is considered in
appendix B to illustrate how the equilibrium parallel current
density gradient physics is retained in ideal MHD associated
with equation (14).

4.1. Local formulation

In this section, we consider a local theory (suitable for
implementation in GS2), representing the flute-like nature
of fluctuating quantities. A local version of the gyrokinetic
equation is provided by the eikonal approximation [9, 21,
29-31] employed for fluctuations. This simplifies the integro-
differential form of equations (12) and (14), reducing it to a
local differential equation. We employ the Fourier-ballooning
transform for fluctuating fields

o' (1,x) z/<i>'(1‘,x,p)ems("”’)dp7 (16)
R

separating the fast spatial variation and the slowly varying
amplitude, ®, and VS. Note, &’ here can be replaced by
any fluctuating field. Here n is the toroidal mode number and
S denotes the eikonal function, S(x,p) = ¢ — q(¥ — p) with
9 being the poloidal angle, defined such that - VS(x) = 0.
Expanding S around the guiding centre coordinate S(x) =
S(X) + p- VS and noting that the perpendicular wave number
k, =nVS, we write

' (t,x) = / ' (1,x,p) ™D e=ikrosina=E) g, -~ (17)
R
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Here ¢ is defined as
ki, =k, (epcos€ +e3sinf),

with k, = |k, |. Equation (17) provides the gyro-angle
dependence of fluctuating fields at fixed position of the guiding
centre. g in equations (12) and (14) is independent of o when
expressed in guiding centre coordinates. Therefore, adopting
an eikonal form for g, i.e.

g= / g(t,x,p)e™adp, (18)
R

we must ensure that the slow variation within g is of the form

g(tx,p) =8(t,X,p)e VS (19)

and therefore

g= / §(t,X,p)e™®dp. (20)
R

Substituting equations (17) and (20) in equation (12), we
obtain

0g 0g X
E—Fu aX—Hng (C(of)s
eZ0x' OF x’ OF
“m or U, + g liku <) oy
. 21)
eZ x' OF (
m[ u-V)+Vp-V,] <Bo3u U>
eZ OF

X'u®-V)+Vp-Vi] —

(‘9U

Here we have defined the drift frequency as wp = Vp -k and

— (ci)’—ufl“)]o (kip)+ HJI (kip),

ki
with A} = (iB[ /K% )k1 x b, adopting the gauge V-A" =0.
J 1s the Bessel functlon of the first kind, of order k. The colli-
sional term on the left hand side of equation (21) depends on a
specific form of the collision operator and therefore has been
left unspecified. Vp -V | in equation (21) is to be replaced
with Vp - ik when acting on fluctuating quantities.

4.2. Maxwell’s field equations in local gyrokinetics

The system of equation (21) for each particle species is closed
via the plasma quasi-neutrality condition:

1/
vy | [
-

1/2
- ABy)"/

i
An)
\%4

(22)

€Zj u aFu
m; V2 BoaA

X (gj.]() (klpj) -2

and Ampere’s law:

A 1/Bo
KLA[ = pomBo Y _eZ; ) U/+V3dV/ d\[giJo (kip;)
- R 0
J ag

(i )
v

mj
(23)

2(1—ABy) @
\ V2 BodA

and

) 1/Bo 2dx Iy (kipj)
gjs 1\KLP
Bﬁ:quWijZ/+VdV/ Ve i
J o

k1 pj
(24)

Here A\ =2p/V? is the pitch angle and u = oV/(1 — )\Bo)l/2
with o =u/|u|; neym,; and T, are the equilibrium density
and temperature of species j. p; is the Larmor radius of
species j. o is the magnetic permeability of free space.
According to equation (24), B\/I ~ BABy, where [ is the
ratio of plasma pressure to magnetic field pressure, and
therefore B\/I is typically anticipated to be more import-
ant at higher beta. Based on equation (11), equations (22)—
(24) extend a conventional set of the time-independent local
gyrokinetic Maxwell equations (e.g. equations (10)—(12) of
[32]). For the purposes of this paper, equations (22)—(24)
are sufficient, provided By/By < 1. Generally, when all the
second order corrections are retained (see equation (57) of
[12]), equations (22)—(24) must retain higher order terms
in A, including corrections associated with V acting on
equilibrium quantities. For example, limitations associated
with the conventional gyrokinetic quasi-neutrality equation
are discussed in [33] for equilibria that deviate from the
Maxwellian.

Equations (21)—(24) provide a relatively compact system,
valid in the limit of By/By < 1, that can be readily incor-
porated into existing local gyrokinetic codes. Note that typic-
ally current gyrokinetic codes are accurate up to O(A %Fg).
To quantify the impact of these neoclassical, higher order
corrections, we have extended GS2, incorporating the effects
of neoclassical tokamak plasma equilibria in accordance
with equations (21)—(24). The extension is compatible with
the NEO code for the equilibrium distribution function (an
Eulerian code that solves the drift kinetic — Poisson system)
[22-24]. This therefore allows for a general, D-shaped toka-
mak geometry, complete with experimental plasma profiles.
Furthermore, equation (21) removes the low collisionality lim-
itation in the equilibrium solution. Note that in the limit of
rare collisions in the equilibrium solution and in the absence
of the fluctuating magnetic field, equation (21) reduces to the
low flow gyrokinetics of [10, 27]. In the following section, we
quantify the importance of the neoclassical, higher order cor-
rections of equations (21)—(24).



Plasma Phys. Control. Fusion 65 (2023) 054006

AV Dudkovskaia et al

5. Numerical assessment of neoclassical
corrections

We extend GS2 to capture the neoclassical physics associated
with F; in equations (21)—(24). Two models are employed
to calculate Fy. In the first (analytic) model, F; is based
on a momentum-conserving, pitch angle scattering collision
operator in a large aspect ratio tokamak (see appendix A).
In this analytic model, collisions are assumed to be much
smaller than the particle free streaming along the equilib-
rium magnetic field lines/drift frequencies and hence can be
treated perturbatively. The second model is more general: F;
is provided by NEO (to be referred to as NEO GS2) with
no restrictions on the particle collision frequency, apart from
the fact that the collision frequency should be much smaller
than the cyclotron frequency to ensure Fy is gyro-phase inde-
pendent. In NEO, the drift kinetic equation for the first order
non-adiabatic distribution function is solved by expanding it in
a Fourier-Legendre series in pitch angle space and a Fourier—
Chebyshev [22, 23]/Laguerre series [24] in energy space. The
non-adiabatic piece of the neoclassical distribution function,
Fq, is then

Hi(¢,9,\,V)=
R TS reonn () (1) e
o | 23)
with
Fi = H, —FO%%, (26)

where P, is a Legendre polynomial of degree a >0 and
ng(a)ﬂ/ % is the generalised Laguerre polynomial of degree
b > 0. The index k (a) can, in principle, be arbitrary and allows
one to test different kernel functions in the energy expan-
sion. In this paper, k(0) =0 and k(a) =1 at a>0. £(\) =
u/V with {2 =1—ABy, ¥ is the poloidal angle, and V, is
the particle thermal speed. The first order electrostatic poten-
tial associated with Fy is ®) = O(A®y) and eZPo/T ~ 1
with T being the leading order particle equilibrium temper-
ature®. NEO then finds the generalised Fourier coefficients
cap and the corresponding electrostatic potential. This solu-
tion is then provided as an input in GS2 and transformed back
into real space onto the GS2 velocity grid in accordance with
equations (25) and (26). This ‘real space’ F| then contributes
to a system of equations (21)—(24), incorporating neoclassical
equilibrium physics. Note that the velocity space transforms in
equation (25) are performed at fixed v, which therefore allows
one to calculate the radial derivatives of F'; on the right hand
side of equation (21) in inverse, Fourier—Legendre/Laguerre
space and then perform the transformation into ‘real space’,
ie. (¥, 0,\V).

6 Note that @9 = ®§ + &} + O(A2®y), where &) = ®J (1)) when based on
the Maxwellian F.

To ensure that the converted F; satisfies the neoclassical
equilibrium of equation (9), we (1) benchmark F; against its
analytic form obtained for a large aspect ratio, low collisional
plasma (as shown in appendix A) and (2) compare the orbit-
averaged moments of this ‘real space’ distribution function
against the NEO results. As an example, in figures 1(a) and (b)
we show F plotted as a function of \ for different collision
operators. ‘Connor’, ‘HSO’ and ‘FP’ correspond to the ‘real
space’ Fj calculated with the Connor (i.e. the pitch angle scat-
tering operator of appendix A that conserves momentum and
number of particles) [34], zeroth-order Hirshman—Sigmar [35]
and full linearised Fokker—Planck [24] collision operators.
‘Analytic’ represents the analytic F; calculated in appendix A.
As anticipated, the analytic F; is in agreement with the ‘Con-
nor’ F; away from the trapped-passing boundary. In the vicin-
ity of the trapped-passing boundary, gradients in pitch angle
become steep, and hence collisional dissipation becomes com-
parable to parallel streaming. This, in turn, creates a thin
dissipation layer that surrounds the trapped-passing bound-
ary (e.g. see section 5.2 of [36]), invalidating the perturbat-
ive treatment of collisions in the ‘analytic’ F'; and explaining
the difference between the analytic solution and ‘Connor’ F;
in figure 1(b) near A =0.8. Since the analytic model F also
requires the large aspect ratio tokamak limit, below it will be
used only in certain examples for comparative purposes. Note
that the zeroth-order Hirshman—Sigmar collision operator con-
tains slowing down effects in addition to pitch angle scatter-
ing, providing results in close agreement with the full linear-
ised Fokker—Planck collisional model (figures 1(a) and (b)).
This deceleration effect is important to accurately calculate the
bootstrap current.

To illustrate the second benchmark test, in figures 1(c)
and (d) we plot the NEO and NEO GS2 orbit-averaged parallel
current density and its radial derivative as functions of plasma
collisionality. The parallel current density is constructed as

=Y [y
J

1/Bo
:WBOZerZU/RJrWdV/o Fij(¢,9,\,V;0)dA,
J o
(27

where only the o dependent part of the equilibrium distribution
function carries parallel flows. Orbit-averaging is defined as an
average over ¥ at fixed 1 for passing particles and an integral
between bounce points with a sum over o for trapped particles.
The agreement between NEO and NEO GS2 is remarkably
good in both cases.

We note that there is no equilibrium electric field in con-
ventional GS2 (i.e. when the conventional, Maxwellian based
gyrokinetic-Maxwell system is being solved), i.e. d®)/dy) =
0, with the equilibrium plasma quasi-neutrality being satisfied
automatically by the Maxwellian. Inclusion of the higher order
corrections in the equilibrium solution makes the equilibrium
distribution function not constant on the flux surface. The
neoclassical, first order electrostatic potential, ®l is then
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Figure 1. (a) Example of the first order equilibrium ion distribution function, F ;, plotted as a function of pitch angle, A, at minor radius

r = 0.5a (a is the value of r at the last closed flux surface), V= 1.095V; (V, is the particle thermal speed), o = 41 (passing branch) and

o = o, (trapped branch) for different collision operators. The plasma inverse aspect ratio € = 0.2, elongation x = 1 and triangularity A = 0;
collisionality v; = 10~2 and the normalised ion Larmor radius pifa= 1073 F 1,; 1s normalised to the Maxwellian distribution function, Fy ;.
The vertical line denotes the trapped-passing boundary. (b) Same as (a) but zoomed in around the trapped-passing boundary. (c¢) The
orbit-averaged normalised neoclassical parallel current density, J_'”, and (d) its radial derivative, Bju /Oe, plotted as functions of v;. NEO
corresponds to the result calculated by NEO, while NEO GS2 is based on ‘real space’ F'y, i.e. rewritten in terms of the GS2 coordinates.f” is

normalised to eregm V: (egm is the leading order equilibrium density). Thin dashed lines in (c) represent extrapolated values when v; < 1072
and v; > 107",

021
0.1
5
= 0.0
&
_0.1’
_0.2’

3 -2 -1 o0 1 2 3

Figure 2. Example of the neoclassical, first order electrostatic potential, <I>(1), (green solid line) and its second radial derivative, (82 '1>(1) / 852) R

divided by the radial electric field, — (8@6 / (96), (purple dash-dot line) plotted as a function of poloidal angle, ¥, at the minor radius
r=0.5a (a is the value of r at the last closed flux surface). The inverse aspect ratio € = 0.2, elongation x = 1 and triangularity A = 0;

v; = 1073 (Fokker—Planck collisions) p; Ja= 102 and the equilibrium density and temperature gradient length scales are RL, ' = 2.2 and
RL; ' = 6.9, respectively. Here @) is normalised to 7, /e, where T is the leading order equilibrium electron temperature.

calculated to ensure that the equilibrium plasma is quasi- Note that in addition to the limitations listed above, the ana-
neutral to O(AYFy): > ¢Z; [F1,;dV =0 (e.g. see figure 2 lytic equilibrium solution of appendix A does not allow for the
for ®} and its derivative calculated by NEO and figure C1  poloidal angle variation in the equilibrium electrostatic poten-
of appendix C for how it is transformed onto the GS2 grid). tial, imposing ®¢ = Py(¢)).
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Figure 3. (a) The mode frequency, w, and (b) the growth rate, v, of the most unstable mode plotted as a function of the normalised ion
Larmor radius, p* = p; /R. The equilibrium density and temperature gradient length scales are RL,, '=22and RL; ' = 6.9 for ions and
electrons, 5 =0.02. ‘conventional GS2’ denotes the solution of the conventional, Maxwellian-based gyrokinetic-Maxwell system.
‘neoclassical GS2 (analytic F'1)’ corresponds to the solution of equations (21)—(24) based on the analytic model F, calculated in
appendix A. ‘NEO GS2 (s-alpha)’ is based on F'; calculated by NEO for s-alpha geometry and Fokker—Planck collisions.

Below, we quantify the impact of these higher order, neo-
classical corrections on the linear gyrokinetic stability, based
on three different equilibrium models.

5.1. Cyclone base case

The Cyclone Base Case (CBC) provides a set of local equi-
librium parameters from an ITER relevant DIII-D H-mode
discharge [37, 38] at minor radius » = 0.5a, where a is the
r value at the last closed flux surface. It is known to be
unstable to kinetic-ballooning modes (KBMs) [39] at finite
beta, as well as to ion temperature gradient (ITG) and trapped
electron modes (TEM) in the electrostatic limit [38]. The
equilibrium parameters are as follows: s-alpha large aspect
ratio tokamak geometry, the safety factor g =1, magnetic
shear s =0.79, inverse aspect ratio at the surface of interest
€=0.2, kyp; = 0.3 (GS2 notation)’ with the ratio of the ion
and electron temperatures, T; /T, = 1, and their mass ratio,
me/m; =2.74 X 10~*. The second term on the right hand side
of equation (21) also requires the radial derivative of Fj.
This is calculated based on equilibrium parameters at r/a =
(0.49,0.5,0.51).

The neoclassical terms of equations (21)—(24) are anticip-
ated to become more significant at higher p and/or at larger
equilibrium density or temperature gradients. These condi-
tions are relevant to a plasma, which is characterised by high
fractions of bootstrap currents, such as the tokamak pedestal.
To probe the impact of the neoclassical corrections on the local
linear gyrokinetic stability, below we perform a series of arti-
ficial parameter scans around the experimental equilibria, and
the s-alpha approximation exploited in this subsection allows
one to easily switch between the equilibrium parameters. Note
that the s-alpha approximation is to be replaced by a Miller
model in the following subsection. In figure 3 we provide
an illustrative example of how the complex mode frequency,

7 GS2 operates in terms of k, and ky with k% = k? + k? that can be directly
related to the form employed in section 4.1.

w + i, changes with the ion Larmor radius, p;. The scan in
figure 3 is obtained at fixed k, p;, noting that then the conven-
tional GS2 solution (i.e. with the Maxwellian F) is independ-
ent of p;. The neoclassical corrections start playing a role at
pi/R2 1073, Figure 3 is obtained at a low beta, representative
of conventional tokamaks. In figure 4 we show how the com-
plex mode frequency changes with increasing 3. In addition
to p, the second factor that influences the impact of the neo-
classical terms is the equilibrium density/temperature gradi-
ent. In figures 5 and 6 we show the complex mode frequency
as a function of the density and temperature gradient length
scales. This clearly demonstrates a higher impact of neoclas-
sical terms in steep gradient regions. Note that in the pedes-
tal region, we expect typical values of RL, ]T ~ (15-50). In
the initial value solver mode, GS2 provides the solution for
the most unstable mode. For the conventional GS2 CBC case
shown in figures 5 and 6, these are KBMs that are characterised
by a rapid increase in the mode growth rate with increasing
B (figure 4). In addition, their growth rate increases with the
density and temperature gradients, also as expected for KBMs.
The mode frequency shown in figures 5 and 6 for the NEO GS2
case smoothly matches the conventional w at lower gradient
length scales. This therefore can still be identified as KBMs,
modified by the neoclassical corrections. However, it is inter-
esting to note that the growth rate saturates with increasing
RL; ! for the neoclassical case of figure 6 at p* = 1072,

To investigate this saturation further, in figure 7 we
present the effect of the radial electric field shear, defined
here via — (9°®(/0e?) / (0®)/0e), on the mode growth
rate. In accordance with figure 7(a), it slightly decreases
with the inverse temperature gradient length scale, and
so the growth rate increases at larger RL, ' compared
to the conventional GS2 prediction (figure 7(b)). In con-
trast, — (0°®/0e?) / (0®(/0¢) grows rapidly with RL, " in
figure 7(a), correlating with the rapid mode growth rate sat-
uration at a larger RL, "in figures 6 and 7(c). Note that
the growth rate saturation is not observed for the analytic
Fy (see figure 7(c)), where ®, is a function of v only
and hence does not impact F; nor the fluctuating solution.
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Figure 4. (a) The mode frequency, w, and (b) the growth rate, -y, of the most unstable mode plotted as a function of 3. The equilibrium
density and temperature gradient length scales are RL; ! = 2.2 and RL; ! = 6.9 for ions and electrons. ‘conventional GS2” denotes the
solution of the conventional, Maxwellian-based gyrokinetic-Maxwell system. ‘analytic F;” corresponds to the solution of

equations (21)—(24) based on the analytic model F, calculated in appendix A. ‘NEO GS2’ is based on F; calculated by NEO for s-alpha
geometry and Fokker—Planck collisions.
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Figure 5. (a) The mode frequency, w, and (b) the growth rate, -y, of the most unstable mode plotted as a function of the equilibrium
temperature gradient length scale, RL, !, The equilibrium density length scale is RL, ' = 2.2 for ions and electrons, 8 = 0.02. ‘conventional
GS2’ denotes the solution of the conventional, Maxwellian-based gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F'; calculated by
NEO for s-alpha geometry and Fokker—Planck collisions.
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Figure 6. Same as figure 5 but shows the RL, ! variation at RL; '=6.9.
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Figure 7. (a) The second radial derivative of the neoclassical electrostatic potential, (82 )/ 852) , divided by the radial electric field,

— (6@5 / 65) , reconstructed from NEO, plotted as a function of RL; ! at RL; '=6.9and RL; Uat RL; ' = 2.2. The growth rate of the most
unstable mode, +, plotted as a function of (b) RL; VatRL,' =2.2 and (¢) RL; " at RL; '=6.9; pr= 1072, “GS2’ denotes the solution of
the conventional, Maxwellian-based gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F; calculated by NEO for s-alpha geometry and
Fokker—Planck collisions. The equilibrium parameters are chosen as in figures 5 and 6. The purple dash-dot line in (c) is based on the
solution of equations (21)—(24) with the analytic model F, calculated in appendix A, with no self-consistent electrostatic potential.
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Figure 8. The mode frequency, w, and growth rate, v, of the most unstable mode plotted as a function of the equilibrium density gradient
length scale, RL; '. The equilibrium temperature gradient length scales are RLEl =0.1and RLE,,1 = 0 for ions and electrons.

(a) and (b) B = 0.5%, (¢) and (d) B = 2%. ‘conventional GS2’ denotes the solution of the conventional, Maxwellian-based
gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F'| calculated by NEO for s-alpha geometry and Fokker—Planck collisions.

This therefore highlights the importance of retaining the
poloidal variation in the equilibrium electrostatic potential,
) = ®}(1),9), calculated consistently with plasma quasi-
neutrality (see appendix D for the effects of different collision
operators in the equilibrium drift kinetic equation on the KBM
growth rate). Stabilising effects of the radial electric field (and
the toroidal flow shear) have previously been reported in [40]

to explain the turbulence reduction at higher gradients, in [41]
for ITGs or [42] in flux tube gyrokinetic turbulence simula-
tions with the Maxwellian background, for example.

In figure 8 we perform a density gradient length scale scan
in the absence of the electron temperature gradient and a sig-
nificantly reduced ion temperature gradient to show that the
growth rate saturation still persists in this case and is therefore
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Figure 9. (a) The mode frequency, w, and (b) the growth rate, -, of the most unstable mode plotted as a function of 3. The equilibrium
density and temperature gradient length scales are RL; ! = 20 and RL; !' = 15 for ions and electrons; kypi = 0.3. (c) The growth rate, v, of
the most unstable mode is plotted as a function of kyp; at 8 = 0.1% (electrostatic modes) and 8 = 1% (KBM-TEM transition at kyp; = 1).
‘GS2’ denotes the solution of the conventional, Maxwellian-based gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F'; calculated by

NEO for s-alpha geometry and Fokker—Planck collisions.

not related to the ITG-KBM mode coupling. The mode trans-
ition can be seen as a jump in the mode frequency, w. For
the conventional GS2 CBC case, this can be identified as
the transition from TEM to KBM at the normalised density
gradient length scale, RL, ' ~27 (8 =0.5%) and RL,' ~ 8
(8 =2%). Note that while the KBM growth rate is known
to increase rapidly with beta, as well as with the density
and temperature gradients, the growth rate characteristic of
TEM typically has a much weaker dependence on beta and
density gradient®. As one would expect, inclusion of neoclas-
sical corrections provides a higher impact at higher equilib-
rium gradients. In particular, the equilibrium density gradient
value when the neoclassical corrections start playing a role is
lower at higher beta values: RL, ! ~ 10 (3 = 0.5%),RL, ' ~ 8
(8=2%), RL;' ~ 5 (3 =20%) for the equilibrium paramet-
ers of figure 8, for example’. For the NEO GS2 case shown
in figure 8, the mode can be identified as TEM at 5 = 0.5%
with slowly decreasing growth rate with increasing density
gradients at larger RL;'. Similar to the conventional GS2
case, there is the mode transition at RL, ' ~ 8 at 3 = 2% from
TEM to KBM, modified by the neoclassical contributions (its
growth rate increases with 8 and with the equilibrium gradi-
ents). Similar to figure 6, the mode growth rate is again signi-
ficantly suppressed at 3 = 2% for larger RL,!. It is also inter-
esting to note that the impact of the neoclassical corrections is
much less, when the mode is a TEM than when it transitions
to a KBM.

In figure 9 we consider the situation when both RL, ! and
RL; ! have pedestal-relevant values. In figures 9(a) and (b)
we plot the frequency and growth rate of the most unstable
mode as a function of 3 at k,p; = 0.3. The jump in the GS2
mode frequency at 5 = 0.3% represents a transition from the
electrostatic limit with ~ being relatively insensitive to 5 to

8 The TEM core plasma cases typically also include the ion temperature gradi-
ent mode (ITG) for the same range of the k, p; variation. In the case considered
in figure 8, as can be anticipated, the observed TEM disappears in the absence
of the electron gyrokinetic component.

9 The density gradient length scale scan at 8 = 20% is not presented here.

a KBM at higher beta. In this case, the electrostatic limit is
provided by a TEM driven by the density gradient and with
the mode frequency being in the electron diamagnetic direc-
tion (w < 0). Inclusion of the neoclassical effect smooths this
mode switching, significantly reducing the KBM growth rate.
The latter is mainly the consequence of the radial electric field
shear effect, as well as F'| being calculated consistently with
plasma quasi-neutrality. Indeed, the value of RL; ! in figure 9
is large enough to deviate the radial electric field shear from
its conventional gyrokinetic value characteristic of the low
density gradient (as shown in figure 7(a)). The corresponding
growth rate spectrum at large density and temperature gradi-
ents is presented in figure 9(c) for two different beta values.

All the provided examples demonstrate that the neoclas-
sical corrections influence the gyrokinetic-Maxwell solution
even for the CBC (conventional tokamak core plasma) case.
Their impact grows with the equilibrium gradients, p and with
B. Therefore, we would expect their contribution to become
non-negligible for the tokamak pedestal region and STs. An
example of the latter is considered in the following section.

5.2. ST core plasma

The equilibrium used in this section is based on the finite
beta ST equilibrium of [43] (for a detailed description of
the Miller parametrisation process, see [44]). The equilib-
rium parameters are as follows: the Miller equilibrium toka-
mak geometry [45], the normalised radius of the surface of
interest, r/a = 0.69, normalised major radius of the centre of
the surface of interest, Ry/a = 1.85, the safety factor ¢ =3.5,
magnetic shear s =0.54, plasma elongation x =2.82 and tri-
angularity /A = 0.33, elongation shear s, = —0.21 and trian-
gularity shear spo = —0.1, 3=0.16 and 8’ = —1.15 (where
here a prime denotes the derivative with respect to r) defined
via the gradient of the plasma pressure, ignoring the gradient
of the magnetic field, and p; /a =4 x 1073, For simplifica-
tion, we assume a model based on two kinetically modelled
species (bulk Z; = 1 ions and electrons) with the ratio of the
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Figure 10. (a) The mode frequency, w, and (b) the growth rate, -y, of the most unstable mode plotted as a function of the equilibrium
temperature gradient length scale, aL; ' The equilibrium density length scale is aL, ' = 0.43 for ions and electrons; kypi =0.21.
‘conventional GS2’ denotes the solution of the conventional, Maxwellian-based gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F;
calculated by NEO for the Miller geometry and Fokker—Planck collisions.
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Figure 11. Same as figure 10 but shows the aL; " variation at aL;1 =3.35.

ion and electron temperatures, T; /T, = 1, and their mass ratio,
m,/m; =2.18 x 1074,

In figures 10 and 11 we show the artificial density and tem-
perature gradient length scale scans based on the solution of
the conventional gyrokinetic-Maxwell system and the solu-
tion of equations (21)—(24) in the presence of the neoclassical
equilibrium effects. At this relatively low value of the norm-
alised Larmor radius, the impact of the neoclassical correc-
tions on the stability is relatively small, except at the highest
gradients. Similar to the CBC case, the dominant instability in
figures 10 and 11 can be identified as a KBM (k,p; = 0.21):
its growth rate increases with both density and temperature
gradient length scales, as well as with beta (figure 12(a)).
From figure 12, at the reference equilibrium ion/electron dens-
ity and temperature gradient length scales al, ! = 0.43 and
al; ''=3.35, and /3 consistent with the equilibrium paramet-
ers at the flux surface of interest, r/a = 0.69, the mode growth

rate almost matches the conventional GS2 + in the absence of
neoclassical corrections. However, switching to a more central
flux surface, r/a = 0.53, results in an increase of 3, and the dif-
ferences between the NEO GS2 solution and the conventional
one are more visible. In particular, higher order gyrokinetics
is found to decrease the KBM threshold beta, increasing the
KBM growth rate, compared to the conventional gyrokinetic
predictions (see figure 12(b)).

In this example, at kyp; > 1, there is a mode transition from
KBMs to micro-tearing modes (MTMs) for the most unstable
modes (see figure 13) with the mode frequencies being in
the electron diamagnetic direction w < 0. A discontinuity in
the mode frequency in figure 13(a) at k,p; ~ 3 represents a
transition between two different MTMs. Like KBMs, MTMs
strongly depend on beta. Indeed, both these modes require a
threshold beta to be exceeded to drive them unstable [46, 47].
However, in contrast to KBMs, the impact of the higher order
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Figure 12. The growth rate, -y, of the most unstable mode plotted as a function of 8 at (a) r/a = 0.69 and (b) r/a = 0.53 flux surface at
kypi = 0.21. The value of beta consistent with the equilibrium parameters at the flux surface of interest is (a) 5 =0.16 and (b) 5 =0.33. The
flux surface contours are shown in (c). The value of By /By is 0.22 (r/a = 0.53) and 0.28 (r/a = 0.69) at ¥ = .
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Figure 13. (a) The mode frequency, w, and (b) the growth rate, -y, of the most unstable mode plotted as a function of k,p; at the r/a = 0.53
flux surface, characterised by ¢ =3.1, s=0.17, k =3.04, A = 0.31 and 5 =0.33. ‘GS2’ denotes the solution of the conventional,
Maxwellian-based gyrokinetic-Maxwell system. ‘NEO GS2’ is based on F; calculated by NEO for the Miller geometry and Fokker—Planck

collisions.

theory on the MTM growth rate is found to be minimal in this
case.

6. Discussion

The simulations presented here have been motivated by the
importance of the bootstrap current (and associated pressure
gradients) for ideal MHD stability (e.g. high n kink-ballooning
modes), suggesting that it is likely to be important for elec-
tromagnetic drift instabilities and the associated turbulence.
We have therefore extended gyrokinetic theory to incorpor-
ate neoclassical flows and the bootstrap current in particular.
To simplify the gyrokinetic Maxwell field equations, we have
only considered the By /By < 1 limit of [12], i.e. equation (12)
(global formulation) or the system of equations (21)-(24)
(local formulation). The latter has been implemented in the
local gyrokinetic code, GS2, to quantify the impact of the
higher order, neoclassical corrections in gyrokinetics and can
be considered as an extension of the previously developed,

electrostatic, low flow version of GS2 [10, 13-15] to a
finite/high beta, electromagnetic case.

As can be anticipated, there are three main factors that
determine the importance of the neoclassical corrections to
gyrokinetics: (1) the particle Larmor radius, (2) the equilib-
rium density and temperature gradient length scales and (3)
beta. The conditions of the tokamak pedestal are most likely to
be where the neoclassical corrections are important, especially
when the KBM plays a role. While the value of p; /L > 1072
is already sufficient for the neoclassical corrections to play a
role, the equilibrium gradient values must be carefully selec-
ted to ensure consistency with the perturbative treatment of the
equilibrium solution and F; in particular.

Based on the test cases considered in section 5, we
summarise

o The KBM growth rate is found to be significantly suppressed
by the inclusion of neoclassical effects at large density gradi-
ents, representative of the tokamak pedestal values, at low
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(figure 8(d))/moderate (figure 6)/large (figure 9(b)) temper-

ature gradients. This growth rate suppression primarily res-

ults from the effect of the radial electric field shear at large
density gradients.

The radial electric field shear response to increasing temper-

ature gradients is opposite to that associated with increasing

density gradients. However, in contrast to RL; !, increas-
ing RL; ! only slightly impacts the radial electric field shear

(especially at lower RL; '), which then explains why no

growth rate saturation is observed at a larger RL, Vin figure 5

or in section 5.2.

While then the main factor responsible for suppressing/en-

hancing the mode growth rate is the neoclassical electro-

static potential, ®} = & (1, 19), calculated consistently with
plasma quasi-neutrality, we also note that it is important to
accurately resolve the collisional boundary layer that sur-
rounds the trapped-passing boundary in pitch angle space.

This layer introduces the physics of trapped particles into

the dynamics, influencing the form of ®(1/,1) and its radial

derivatives.

e In certain cases, inclusion of neoclassical effects is found
to prevent mode switching (e.g. TEM-KBM in figure 8(b)).
Note that in the initial value solver mode, GS2 provides the
result for the most unstable mode, i.e. other, more stable
modes might still be present.

e The main impact of the neoclassical corrections is found to
be in the range of 0 < kyp; S 1.

e While the dominant impact of the neoclassical equilibrium
physics is found to be on KBMs (both the KBM growth
rate and threshold beta), electrostatic modes (k,p; < 1) are
influenced as well at large density and temperature gradients
(figure 9).

6.1. Future work

Here we have limited the numerical simulations to linear the-
ory to provide an initial assessment of the importance of neo-
classical corrections, ensuring consistent ordering by consid-
ering the limit of By /By < 1. At By/By < 1, the only nonlin-
ear effect will be provided by the conventional nonlinear term,
ie. B%(Vx’ xb), - g—i to be added to the right hand side of
equation (12). Indeed, it can be demonstrated that turbulent
effects on the neoclassical transport (that must be included in
the equilibrium equation when the problem is nonlinear) con-
tribute only to the gyro-angle independent piece of the second
order equilibrium distribution function, F’,, and the gyro-phase
average of the corresponding term is zero [5]. The nonlinear
effects will be addressed in our future publication. We also
note that the By /By < 1 assumption might be inaccurate in
certain cases (especially those relevant to STs), and therefore
the O(AZ%FO) terms of [12] (neglected here) are likely to
be important for a full treatment of the current density gradi-
ent effects (and kink/peeling physics in particular) in regions
where the equilibrium profile gradients are strong (specifically
in STs). The O(A2%F0) terms of [12] will be incorporated in
GS2 as part of future work. Note that in the pedestal, the ped-
estal width, A,z ~ (10-40)p;, [48-51] is typically chosen for
the characteristic length scale, which therefore might impose

additional limitations on A = p; /L ~ p; /A4 (and therefore
) as the expansion parameter in the Jf-type kinetic formula-
tions. In particular, the latter might limit the applicability of the
presented higher order gyrokinetic theory (and generally any
df-type approach based on A < 1) in certain tokamak pedes-
tal cases, i.e. depending on how A, scales with p;, as well as
By /By in the pedestal. In situations when § < 1 but A remains
small, one can employ A as an expansion parameter in the
equilibrium solution, which will then require one to retain the
finite Larmor radius corrections in F, as discussed in [12].

Finally, while local gyrokinetic simulations are relat-
ively well understood, they are limited by the assumptions
of the ballooning transform. The eikonal approximation of
section 4.1 (and hence the set of equations (21)—(24)) elim-
inates formulational problems of nonlocal approaches (e.g.
absence of unique sources or radial boundary conditions),
which makes it convenient for the initial assessment of the
impact of higher order, neoclassical equilibrium effects. Fur-
thermore, this is fully justified, provided there is no strong
functional dependence of the fluctuating quantities on By/B.
Generally, to allow for the radial profile variation around the
flux surface of interest, future work is required to implement
the gyrokinetic theory of [12] in a hybrid gyrokinetic code.
In addition, while the equations derived in [12] are generally
global, they require accurate boundary conditions/generalisa-
tion of the ballooning transform to be employed to capture
coupling to the vacuum solution and therefore to allow for
the external modes. This physics is likely important for a full
understanding of the impact of the current density (i.e. kink
drive) in pedestal gyrokinetics, and will be addressed in future
work.
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Appendix A. Example neoclassical equilibrium
solution for large aspect ratio

For benchmarking purposes, in this section we employ a num-
ber of simplifying assumptions and present Fj, based on a spe-
cific two species model suitable for analytic treatment. F is
provided by the gyro-averaged O(A! %F 0) equation that reads

o
19).4

OF

ub (X) X

+Vp (X) =C(F).

U,p,

(A1)

U,p,
Here the drift velocity is defined as

2
Vp = iEo <b+ b x {Svao +u? (b V)b} (A.2)
Bo We 2
with E( being the equilibrium electric field. Note, we assume
that the particle collision frequency ~V;/L, i.e. is A times
smaller than the cyclotron frequency, w,; and Vp = |Vp| ~
AV;. C on the right hand side of equation (A.1) is the gyro-
averaged collision operator. In the drift kinetic approach,
the difference between C and its gyro-averaged version is
neglected. It can be demonstrated that for the like-species
Fokker—Planck collision operator, this difference is zero [21].
At O(A! %Fo), equation (A.1) is equivalent to

Iu 0F,

o 0 (A.3)

u(b-V) le = C(F),

U,

Ci (F)=vii (V) [ZMBO)UZ 0

By oA,
for ions and
(1-XBy)"/* o
Coo (F) =1 (V) [2—n—— —
() =ren) |25 5
with
(1—-\By)* o
(F) =, o ) 2
Cel( e) Vej (V) BO a)\ “

for electrons. Here u); = (3w '/2V5)/(2n0) [ Fju/V*dV and
wyj = (1/ng) [ F;udV (j=1i for ions and j= e for electrons);
Vi is the thermal velocity of species j and n is the equilibrium
density. Fj"’ is the Maxwellian distribution of species j, and
vj and v,; denote the corresponding collision frequency. A =
241/ V? is the pitch angle. We also adopt a large aspect ratio,
circular cross section tokamak equilibrium for simplicity.
The system of equations (A.5) with equations (A.6)—(A.8)
is an integro-differential system coupled via the electron-ion
collisions. It is solved with the following boundary conditions
in A space: (1) we require a mixed boundary condition at the

provided Ey = —®;V, where @y is the equilibrium electro-
static potential, and prime denotes its derivative with respect
to 7). Treating collisions perturbatively in equation (A.3) (e.g.
relevant to the banana collisionality regime), we write

O)Z_IlaFo

(
F
! Wej 67/1

+Fla
U,p

(A4)

for the leading order solution in collisions. F is the constant of
integration provided by the solubility condition at next order:

(

where ¢ is the safety factor. (.. )g represents the orbit aver-
aging operator at fixed v, i.e. an average over poloidal angle,
1, for passing particles and an integral between bounce points
with a sum over o = u/|u| for trapped particles. In both cases
the integrals in poloidal angle are on the flux surface of
interest, ¥. Equation (A.5) requires a specific model for the
collision operator. Here we employ a momentum-conserving,
pitch angle scattering collision operator (equations (62)—(64)
of [52]):

qR*By

(0) v
F
e

9

=0, (A.5)

OF
()\(l — A\By)'/? a/\‘ ) + V—uzﬁHi(F)Fﬁw (A.6)
P ti
oF
()\(1 — ABy)'/? Y ) + Vizuue(F)Fy (A7)
P te
OF, 2
()\(1 — ABy)'/? o ) - V—Zuu,- (F;)FY (A.8)
w te

deeply passing/trapped region to ensure the solution is finite
and (2) the solution and its first derivatives must be matched
at the trapped-passing boundary. After one iteration in the
momentum-conserving term, we find

2
F = UIV{ [L;‘ + (Lz - §> Lﬁl} V1= B
Wei Vti 2
2 Ae
4B (12—1)@1/ %-G(Ac—)\) 1
2 Vi A <\/1 —)\Bo>19
(A.9)



Plasma Phys. Control. Fusion 65 (2023) 054006

AV Dudkovskaia et al

for ions and similarly

M
Fi= Iu OF,
Wee 81/] U,
oVBy [ I OFY FT\ > d\
— 20 -5 +i) V2 / — O (Ae— N
Wee w U, te A <\/1 — )\Bo>19
(A.10)

Appendix B. Note on gyrokinetic ideal MHD

Employing a low beta, small inverse aspect ratio tokamak
approximation and neglecting the nonlinear physics to sim-
plify the analysis, we multiply the kinetic equation that cor-
responds to a local version of equation (14) by powers of V
with appropriate scalar weights and integrate it over velocity
space to obtain

for electrons where L, and Ly; are the density and ion temper- 9, 4 | in By
ature gradient length scales and 2 (ngay + naaj +n) + (VI + = ) FadJH
N ) B
= Vee <BOM”9>19 2V€i <B()MH,'>79 (A 11) L VJ_ (neqmuj‘lﬁo> +V. Fj/ =0 (Bl)
I Vee + Vei BO Vee + Vei BO ’ '
for th tinuit ti d
Equations (A.9) and (A.10) depend on ¢ and therefore provide or the continuity equation an
a non-zero contribution to the neoclassical flows.
|
(., Vo' xb |
m]a <F + I‘adx/ I~ nequ I’Leqmujnﬁo BO
Vo' xb neo inBy V&' xb neo
—mj————-V (neqm )b Mj— == = Negmll}|
Bo RB, B J
mT. B’ (B.2)
neo H j J L neo\ :
et~ iy xb) + AT TR (eqnidf”) il x B] 4+ m; 9 - / VVgdv

0A|
_€Zjngqm Wb - (V I

for the force balance. Here we have introduced

0 eZ; | I dn
Magj = *"equ]‘b’v Nagj = —A] B, dzzm
and
1 dp; dn
U = — J 1 I ¥ A’ L
neqm ” - EZI‘B() d'l/}7 adx/'H - BO dT/) 5 (B3)

where n,,, is the equilibrium plasma density, and p; and 7;
are the equilibrium pressure and temperature associated With
each particle species, respectively. We have defined V|| =

V.u}i? =i, Loy =Ty yband B} = V1 Aj xb.nf and

I‘j are associated with the resonant piece of the ﬂuctuatlng
distribution function, g, of species j. k| is the perpendicular
wave number.

To obtain a general form of the force balance equation,
one can combine equation (B.2) with equation (B.1) and then
close the system by the equation of state, for example. We
do not present this analysis here as the focus of this section
is to demonstrate that the neoclassical current density effects
associated with the equilibrium pressure gradients (e.g. Lg;‘ﬁ”
of equation (B.3)) are captured in gyrokinetic ideal MHD,
i.e. in the set of equations (B.1) and (B.2). The electric com-
ponent of the Lorentz force, associated with the time vari-
ation of A"|, and a piece of the perturbed plasma pressure

in By
) addTb eZiNegmlt i

neo X Bj_

gradient can be recovered from the conventional gyrokin-
etic ordering — first two terms on the right hand side of
equation (B.2). The magnetic component of the Lorentz force
associated with u"‘r’, though, requires the self-consistent inclu-
sion of the neoclassical corrections in F' and provides the
third term on the right hand side of equation (B.2). The
latter is anticipated to be relevant to kink/peeling drive in
conventional ideal MHD [53]. Note, in the hybrid, fluid-
kinetic plasma description, the kink drive usually enters via
the continuity equation, i.e. the BioV(neqmu"’lw) term of
equation (B.1) [20, 54].

Appendix C. Neoclassical electrostatic potential
and its derivatives in NEO and GS2

In figure C1 we provide an example of the neoclassical electro-
static potential, @], (and its derivatives) plotted as a function
of the poloidal angle, ©. ‘NEO’ corresponds to the result cal-
culated by NEO with the number of points in ¥ space, Ny =
57. The NEO theta (1) grid covers the range of —7 <Y < 7
with ®} (—7) = ®} () and is equally spaced. The NEO &} =
@4 (1) is then read into GS2, interpolated and then evaluated
on the GS2 theta (%) grid. ‘GS2’ in figure C1 corresponds to
@/ and its derivatives reconstructed from the NEO @/ on the
GS2 theta grid with the number of points in GS2 theta grid,
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Figure C1. Example of the neoclassical, first order electrostatic potential, @6, and its radial, (9@(1) /O¢, and poloidal, 8<I>(1, /09, derivatives
plotted as functions of ¢ at » = 0.5a (a is the minor radius, r, at the last closed flux surface). The plasma equilibrium parameters and
normalisation are chosen as in figure 2. ‘NEO’ denotes results calculated by NEO on the NEO theta () grid. ‘GS2’ corresponds to ®} and
its derivatives reconstructed from the NEO <I>(]) on the GS2 theta (¢J) grid.

Ny = 161, and covering five 27 segments along equilibrium
magnetic field. In figure C1, the radial derivative of ®/ is based
on its values at r/a = (0.49,0.5,0.51).

Appendix D. Impact of collisions on the growth rate
saturation at larger density gradients

In this section, we consider how significant the impact of
different collision operators is on the growth rate satura-
tion observed in figure 6. In figure D1 we show the KBM
growth rate, vy, as a function of the equilibrium density gradi-
ent length scale, RLn_', at RL; 1= 6.9 for different colli-
sional models. ‘GS2’ corresponds to the solution of the con-
ventional gyrokinetic-Maxwell system with the Maxwellian
background in the absence of the neoclassical effects. ‘NEO
GS2, FP’, ‘NEO GS2, Connor’, ‘NEO GS2, HSO’ and ‘NEO
GS2, HS’ correspond to the solution of equations (21)—(24)
with F'| obtained with the full linearised Fokker—Planck [24],

pitch angle scattering (Connor) [34], zeroth-order Hirshman—
Sigmar [35] and full Hirshman-Sigmar collisional model
[55], respectively, for s-alpha geometry. ‘Analytic’ denotes
the solution of equations (21)—(24) based on the analytic F
obtained in appendix A. The main features of each model are
summarised in table D1.

In figure D1 the growth rate saturation at larger density
gradients is observed in NEO GS2 even for a simplified pitch
angle scattering collision operator in the absence of friction
and diffusion-type operators. This therefore suggests that the
main factor responsible for suppressing the KBM growth rate
is the self-consistent neoclassical electrostatic potential, ol =
@} (1,19). We also highlight the importance of accurately cap-
turing the collisional trapped-passing boundary layer physics
as this provides collisional dissipation even in the limit of rare
collisions via matching the passing and trapped particle dis-
tribution functions in pitch angle space, as well as introduces
the trapped particle physics into the dynamics. The latter then
influences the form of ®} (1), ) via quasi-neutrality.
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Table D1. Features of the neoclassical equilibrium solution of figure D1 for different collisional models. ‘N’: effect is not included; “Y’:

effect is included.

Large aspect ratio

Trapped-passing Self-consistent

Collision model assumption Slowing down effects boundary layer physics O = @})(w, 9)
analytic Y N N N
NEO GS2, FP Y Y Y Y
NEO GS2, Connor Y N Y Y
NEO GS2, HSO Y Y Y Y
NEO GS2, HS Y Y Y Y
3 5 i 7 [10] Barnes M, Parra F I, Lee J P, Belli E A, Nave M F F and
T /' White A E 2013 Phys. Rev. Lett. 111 055005
| : [11] Calvo I and Parra F 12015 Plasma Phys. Control. Fusion
301 / 57 075006
. 1 ,/ [12] Dudkovskaia A V, Wilson H R, Connor J W, Dickinson D and
1 /o Parra F I 2023 Nonlinear second order electromagnetic
1 / a gyrokinetic theory for a tokamak plasma Plasma Phys.
2.5 ) S ¢ Control. Fusion 65 045010
o 1 [13] Lee J P, Barnes M, Parra F I, Belli E A and Candy J 2014
~ ] Phys. Plasmas 21 056106
N 2.0 [14] Lee J, Parra F I and Barnes M 2014 Nucl. Fusion 54 022002
- | analytic [15] Lee J, Barnes M, Parra F I, Belli E and Candy J 2015 Plasma
> 1 Phys. Control. Fusion 57 125006
151 72 GS2 [16] Barnes M et al GS2 v8.1.2 (8.1.2) Zenodo (available at:
T —e— NEO GS2, FP https://doi.org/10.5281/zenodo.6882296)
{ [17] Dorland W, Jenko F, Kotschenreuther M and Rogers B N 2000
1 0 ] o-- NEO GS2, Connor Phys. Rev. Lett. 85 5579
g -+—- NEO GS2, HSO [18] Highcock E 2012 PhD Thesis University of Oxford
1 (arXiv:1207.4419v1)
NEO GS2, HS [19] Hornsby W A, Angioni C, Fable E, Manas P, McDermott R,
0 . 5 ] . . . . . : Peeters A G, Barnes M and Parra F 2017 Nucl. Fusion
1 0 P, 0 57 046008
[20] Pusztai I, Catto P J, Parra F I and Barnes M 2014 Plasma
IRL -1 | Phys. Control. Fusion 56 035011
n [21] Hazeltine R D and Meiss J D 1992 Plasma Confinement

Figure D1. The KBM growth rate, v, plotted as a function of the
equilibrium density gradient length scale, RL; !, at RL; ' = 6.9 for
the equilibrium parameters of section 5.1. The normalised ion
collision frequency is v; = 0.19V;/a.
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