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Abstract
A new drift kinetic theory for the plasma response to the neoclassical tearing mode (NTM)
magnetic perturbation is presented. Small magnetic islands of width, w≪ a (a is the tokamak
minor radius) are assumed, retaining the limit w∼ ρbi (ρbi is the ion banana orbit width) to
include finite orbit width effects. When collisions are small, the ions/electrons follow
streamlines in phase space; for passing particles, these lie in surfaces that reproduce the
magnetic island structure but have a radial shift by an amount, proportional to ρϑi/e, where ρϑi/e
is the ion/electron poloidal Larmor radius. This shift is associated with the curvature and∇B
drifts and is found to be in opposite directions for V∥ ≶ 0, where V∥ is the component of
velocity parallel to the magnetic field. The particle distribution function is then found to be
flattened across these shifted or drift islands rather than the magnetic island. This results in the
pressure gradient being sustained across the magnetic island for w∼ ρϑi and hence reduces the
neoclassical drive for NTMs when w is small. This provides a physics basis for the NTM
threshold, which is quantified. In Imada et al (2019 Nucl. Fusion 59 046016, and references
therein), a 4D drift kinetic non-linear code has been applied to describe these modes. In the
present paper, the drift island formalism is employed. Valid at low collisionality, it allows a
dimensionality reduction to a 3D problem, simplifying the numerical task and efficiently
resolving the collisional boundary layer across the trapped-passing boundary. An improved
model is adopted for the magnetic drift frequency. This decreases the NTM threshold, compared
to the results shown in Imada et al (2019 Nucl. Fusion 59 046016, and references therein),
making it in quantitative agreement with experimental observations, with wc = 0.45ρϑi, where
wc is the threshold magnetic island half-width, or 2.85ρbi for the full threshold island width,
predicted for our equilibrium.
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1. Introduction

Neoclassical tearingmodes (NTM) [1, 2] are classified as large
scale resistive magnetohydrodynamic (MHD) plasma instabil-
ities [3]. They limit plasma pressure, reducing fusion gain,
and occur in the standard ELMy H-mode, anticipated for the
ITER baseline scenario, as well as advanced tokamak scen-
arios. They can arise in tokamak plasmas due to a filamenta-
tion of the plasma current density parallel to the magnetic field
lines. This filamentation changes the topology of the magnetic
flux surfaces, tearing them apart, to form magnetic islands.
Experimentally, NTMs are found to be driven unstable when
two criteria are satisfied simultaneously: a threshold in pol-
oidal beta and a threshold island width have to be exceeded.
Thus, NTMs are usually triggered above a threshold beta by
another MHD perturbation (e.g. sawteeth, fishbones, ELMs,
error field lockedmodes, etc) that creates a primary seed island
of sufficient amplitude for NTM growth3.

According to the conventional theory [1, 2], which requires
islands to be sufficiently large, the plasma pressure is quickly
equalised around the island due to the large particle and heat
transport along magnetic field lines. Thus, in the absence of
any heat/particle sources from within the island, the plasma
pressure gradient inside the island and hence the total plasma
pressure in the core are reduced. This flattening of the pressure
profile across the island, in turn, leads to a hole in the bootstrap
current near the island O-point, providing the filamentation
to drive island growth. As the bootstrap current density rises
with beta, the island width also grows with beta, resulting in
a degradation of confinement [4–7]. Along with this soft beta
limit, NTMs with lower poloidal mode numbers can also lead
to plasma disruptions through mode locking. There are a num-
ber of NTM control techniques [6]; one of them is to generate
microwaves at the electron cyclotron frequency to drive cur-
rent inside the island and replace themissing bootstrap current.
This O-point electron cyclotron current drive (ECCD) scheme
has demonstrated complete NTM stabilisation on a number of
machines and is to be applied to drive the island width down
to mitigate the confinement degradation and/or suppress the
NTM in fusion devices such as ITER [6]. However, an issue
here is to determine howmuch of the ECCD current is required
for the NTM stabilisation and how localised should it be. This
leads to a requirement for a more detailed understanding of the
threshold physics.

The NTM magnetic islands can either grow or shrink,
depending on the filamentary current density perturba-
tion localised to the rational surface, and parallel to the
magnetic field, J∥. According to the modified Rutherford

3 There is also a special class of the so called triggerlessNTMs that can grow
to the saturated state without any preceding MHD activity.

theory [6–9], the time evolution of the island width is
obtained from Ampère’s law, which can be expressed in the
form:

2τR
r2s

dw
dt

=∆ ′ (w)+
ˆ
J∥dq, (1)

where τR ∼ µ0a2/η is the resistive diffusion time, η is the local
plasma resistivity,w is the island half-width and rs is the radius
of the rational surface, where the safety factor q(rs)≡ qs =
m/n with m/n being the poloidal/toroidal mode number of the
NTM.∆ ′ is the classical tearingmode stability parameter [10–
13]. It arises due to the free energy in the equilibrium current
density, and is calculated from ideal MHD as the discontinu-
ity in the perturbed magnetic flux gradient across the rational
surface. In Rutherford’s original work [13], only the induced
current associated with island growth contributes to J∥, and
this has been explicitly written through the term on the left
hand side of equation (1). Adding tokamak neoclassical effects
and particle drift physics, denoted by the second term on the
right hand side of equation (1) , leads to the so-called mod-
ified Rutherford equation (MRE) [7, 8]. The integral over q,
where q is a triplet of spatial coordinates, represents an integral
across the rational surface of the component of J∥ in phasewith
the magnetic island. The MRE main contributions come from
the bootstrap [1, 2], curvature [14, 15] and polarisation [16–
18] currents and are denoted by ∆bs, ∆cur and ∆pol, respect-
ively. The perturbed bootstrap current exists in the banana
collisionality regime in a tokamak and is written through a
linear combination of the electron/ion density and temperat-
ure gradients. For magnetic islands well above the threshold
with no heat/particle sinks/sources, the pressure gradient and
the bootstrap current perturbation tends to be removed from
within the island, and ∆bs ∼ ε1/2 (Lq/Lp)(βϑ/w) [9, 18] and
hence is destabilising4. Here ε= rs/R0 is the inverse aspect
ratio with R0 being the tokamak major radius, βϑ is pol-
oidal beta; the safety factor and pressure length scales are
L−1
q,p =±∇r lnq,p> 0 for positive shear. However, the phys-

ics is much more complicated for smaller w, relevant for the
threshold. According to experimental observations [19, 20],
small magnetic islands heal themselves. This fact proves the
existence of additional physics to provide the tearing mode
threshold. One such threshold mechanism originates from the
effects of finite radial diffusion [21, 22, 30] and another arises
from finite orbit widths [16, 18, 23–30].

Finite orbit width effects are associated with small mag-
netic islands of width comparable to the trapped ion banana
orbit width, when the polarisation current generally plays a
role alongside the bootstrap current. The polarisation current is
sensitive to the physics of a layer around the island separatrix.

4 An exception is for reversed magnetic shear discharges.
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The model we discuss below is not particularly rigorous for
this. So we restrict consideration to the situation where the
equilibrium radial electric field is zero in the island rest frame,
in which case the polarisation current is not expected to be
important. The dominant physics is then associated with the
bootstrap current and curvature.

∆cur describes the stabilising curvature contribution as an
extension of the linear theory, introduced by Glasser, Greene
and Johnson [14, 15]. Being an O(ε2) effect, the curvature
contribution is generally weak in the large aspect ratio toka-
mak geometry we consider here. However, in spherical toka-
maks the curvature contribution and the bootstrap drive can be
comparable [31].

Existing theories of NTMs typically require the island
width to be much larger than the ion banana orbit width. There
is no analytic theory developed for the neoclassical contribu-
tions for w≲ ρbi. The MRE form shown in [8] is continued
heuristically to a region where w∼ ρbi, but there is no rig-
orous theoretical justification for it. However, in [32] it has
been shown that the marginal island width below which the
NTM is removed, i.e. dw/dt< 0, is about 2ρbi in both ECCD
and beta rampdown discharges and is about 3ρbi in [33]. This
is exactly the region where the existing theory breaks down.
Thus, a new theory is required to determine all the MRE neo-
classical contributions allowing the limit of w∼ ρbi, which is
crucial in providing the NTM threshold island width scaling
for ITER and other future tokamak devices.

We will consider the low collision frequency limit, νii/ε <
k∥VTi and νe/ε < k∥VTe, where ν ii/νe is the ion/electron col-
lision frequency and VTe/i is the electron/ion thermal velo-
city. k∥ = kϑw/Ls, where Ls=Rq/s is the shear length scale
with s= (r/q)dq/dr being the magnetic shear, kϑ = m/rs.
We extend our previous results [34–36] to treat the electrons
with the same drift kinetic formalism that we use for the
ions, while considering magnetic islands at rest in the plasma
E×B frame (ω= 0, where ω is the island propagation fre-
quency in that frame). Earlier work on the ion bootstrap flow
considered small islands of w∼ ρbi by solving the drift kin-
etic equation through a Monte Carlo computational approach
[37, 38]. This simulation confirmed that the ion density gradi-
ent is not removed from the region inside small islands. How-
ever, [37, 38] focused on the ion response only, omitting
the electron response due to the narrowness of the electron
banana orbit, and hence neglected the effects of the electro-
static potential that arises from plasma quasi-neutrality. The
analytic reduction described here explains the physical origin
of the density gradient across the island and provides a new
NTM threshold model that arises from both, ion and electron
plasma responses. It also provides the self-consistent electro-
static potential, Φ, required to ensure quasi-neutrality. When
w≫ ρϑi, the electron and ion distribution functions reproduce
the results of the original theory [18] and Φ does not play
a major role when the island is at rest in the E×B refer-
ence frame. However, when ρϑe ≪ w∼ ρϑi, we find that the
electron and ion solutions differ significantly near the island,
highlighting the importance of deriving Φ self-consistently
from plasma quasi-neutrality. Once the plasma responses are

found, we proceed to the NTM threshold width calcula-
tion determining the total perturbed current density along the
field lines.

The remainder of the paper is organised as follows.
Section 2 introduces the magnetic geometry and the mode dis-
persion relation. In section 3 we derive the equations describ-
ing the plasma response to the NTM magnetic perturbation.
The self-consistent electrostatic potential is found in section 4.
The drift magnetic island concept is described in section 5.
In section 6 we calculate the neoclassical contributions to
the MRE and determine the threshold magnetic island width.
A conclusion follows. More detailed information, including
benchmarking against other models, can be found in appen-
dices A–C.

2. Magnetic topology and NTM dispersion relation

A small inverse aspect ratio, circular poloidal cross section
tokamak approximation is considered. A triplet of spatial vari-
ables {ψ,φ,ϑ} forms an orthogonal set of coordinates5, sat-
isfying ∇φ×∇ψ = rBϑ∇ϑ, where ψ is the poloidal flux
function, while φ and ϑ are the toroidal and poloidal angles,
respectively; r is the tokamak minor radius and Bϑ is the pol-
oidal component of the magnetic field. The equilibrium mag-
netic field is given by:

B0 = I(ψ)∇φ+∇φ×∇ψ, (2)

where I= RBφ depends on the poloidal current, R is the toka-
makmajor radius andBφ is the toroidal component of themag-
netic field. As ε≪ 1 and Bϑ/Bφ ∼ ε, B0 = Bφ+O

(
ε2Bφ

)
,

where B0 = |B0| ≈ B0 (ψ)(1− εcosϑ). We employ a low beta
approximation and to ensure zero divergence of the total mag-
netic field, we take a magnetic field perturbation associated
with the tearing mode to be of the form:

B1 =∇∇∇×
(
A∥b0

)
(3)

with b0 = B0/B0. A∥ is the parallel component of the vector
potential connected to the NTMpoloidal flux perturbation, δψ,
via:

RA∥ =−δψ (4)

with δψ = ψ̃ cosnξ provided a single isolated NTM island is
considered. Here ξ is a helical angle in the island rest frame
defined as:

ξ = φ− qsϑ. (5)

ψ̃ = (w2
ψ/4)(q

′
s/qs) is the NTM perturbation amplitude with

wψ being the island half-width in ψ space related to w in r
space via w= wψ/(RBϑ). q ′

s denotes dq/dψ evaluated at the

5 ∇ψ ·∇ϑ= ϑ ′R 2B 2
ϑ with ϑ ′ = ∂ϑ/∂ψ|χ will provide anO(ε 2) correc-

tion. Here χ is the poloidal variable such that ∇ψ ·∇χ= 0 and {ψ,φ,χ}
forms an orthogonal set of coordinates.
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resonant surface, ψ=ψs. For further analysis, it is convenient
to switch from {ψ,φ,ϑ} to {ψ,ξ,ϑ}. To describe the magnetic
island geometry, we introduce a perturbed flux surface func-
tion Ω that satisfies B ·∇Ω= 0:

Ω=
2(ψ−ψs)

2

w2
ψ

− cosnξ, (6)

with Ω= 1/− 1 corresponding to the separatrix/O-point of
the magnetic island, respectively.

To derive the NTM dispersion relation, we address
Ampère’s law written along the field lines. Projecting out the
J∥ components that are in and out of phase with the magnetic
island and integrating Ampère’s law across the island yield:

1
µ0R

∆ ′ψ̃−
ˆ
R
dψ
ˆ π

−π
dξJ̄∥ cos nξ = 0, (7)

ˆ
R
dψ
ˆ π

−π
dξJ̄∥ sin nξ = 0. (8)

Here we have assumed a stationary magnetic island in the
plasma E×B reference frame to simplify the analysis below6.
J̄∥ is the ϑ-average of J∥. Equations (7) and (8) provide
a system to be solved for the threshold magnetic island
half-width, wc, and the island propagation frequency, ω,
once the perturbed current localised about the island, J∥, is
obtained. This is to be calculated from the ion and elec-
tron distribution functions, which we find in the following
sections.

3. Plasma response

The ion/electron response to the NTM magnetic perturbation
is described by the drift kinetic equation that reads:(
V∥b+VE+Vb

)
·∇fj−

eZj
mjV

[(
V∥b+Vb

)
·∇Φ

] ∂fj
∂V

= Cj fj

(9)

in the island rest frame for each particle species, j. A sys-
tem of two particle species is addressed: plasma electrons
and ions. f j here is to be understood as the gyro-angle inde-
pendent, leading order distribution function in an expansion
in ρcj/L≪ 1, where ρcj is the Larmor radius of species j
and L is the characteristic size of the system. All spatial
derivatives in equation (9) are to be calculated at fixed mag-
netic moment, µ= V2

⊥/2B, and kinetic energy, K = V2/2,
where V is the particle speed. (dµ/dt)∂fj/∂µ is omitted as
a higher order correction since dµ/dt=O(ρcjβ/L)7. Here ∥
denotes a vector component along the magnetic field lines,
∇∥ = b ·∇, b= B/B. VE = [B×∇Φ]/B2 and Vb =−V∥ ×
∇
(
V∥/ωcj

)
are the E×B and magnetic (∇B and curvature)

6 In its general form, equation (7) is to be replaced with equation (1).
7 Terms proportional to ∂/∂t in dµ/dt do not contribute in the island rest
frame, and ρcjb ·∇× b∼ ρcjβ/L.

drift contributions, respectively. ωcj = eZjB/mj is the cyclo-
tron frequency; eZj and mj are the particle charge and mass. Φ
is the electrostatic potential to be determined from the quasi-
neutrality requirement. Cj here is a model integro-differential
collision operator chosen as in [18] and reproduced in
equation (B2).

Expanding about a Maxwell–Boltzmann equilib-
rium plasma, we write fj = fMBj + gj with fMBj (ψ) =

n0 (ψ)π−3/2V−3
Tj (ψ)e

−V2/V2
Tj(ψ)−eZjΦ(ψ)/Tj(ψ) being the

Maxwell–Boltzmann distribution of a species j. The plasma
density, neqm, is related to n0 by neqm = n0 (1− eZjΦ/Tj),
provided eZjΦ≪ Tj, where Φ is the electrostatic potential in

the island rest frame. VTj = (2Tj/mj)
1/2 is the thermal velocity

of a species. gj describes the perturbation in the particle distri-
bution due to the tearing mode occurrence and also includes
the equilibrium neoclassical physics. Seeking a solution local-
ised to the rational surface, we Taylor expand the equilibrium
around ψ=ψs, i.e.

fj =

(
1−

eZjΦ
Tj (ψs)

)
fMj (ψs)+ gj, (10)

where fMj (ψs) = n0 (ψs)π−3/2V−3
Tj (ψs)e

−V2/V2
Tj(ψs) and

Φ= Φ ′
eqm

∣∣
ψ=ψs

(ψ−ψs)+ δΦ (prime denotes the derivat-
ive with respect to ψ, unless otherwise stated), and thus
Φ(ψs) = δΦ. Φeqm is the equilibrium potential in the absence
of the island, and δΦ is the perturbation associated with a
difference in the electron and ion responses to the magnetic
island. For simplicity, below we neglect the equilibrium radial
electric field, i.e. Φ ′

eqm = 0, in the threshold calculation. This
is equivalent to considering an island which is at rest in the
E×B rest frame. The perturbed distribution, gj, then must be
linear in ψ far from the island to match to the Maxwellian
equilibrium, ∂gj/∂ψ|ψ→±∞ = ∂ψfMj (ψs), and the electro-
static potential satisfies ∂Φ/∂ψ|ψ→±∞ = 0.

To solve equation (9) for gj, we define a small para-
meter∆= w/a≪ 1 with the following orderings: eZjΦ/Tj ∼
∆, δΦ/Φeqm ∼ ∆, B1 ∼ ε∆2B0 and gj/fMj ∼∆. Considering
equation (27) for electrons and equation (39) for ions from
[18], we notice that the dimension of the problem can be
reduced by switching from {ψ,ξ,ϑ,µ,V} to {pφ, ξ,ϑ,µ,V},
where pφ = ψ−ψs− IV∥/ωcj is the toroidal component of the
canonical angular momentum. IV∥/ωcj is the excursion of a
particle orbit from the reference flux surface. As w≪ a, the
plasma is toroidally symmetric to leading order and thus we
expect the toroidal component of pφ to be approximately con-
stant on a particle orbit. To rigorously demonstrate this, we
employ an expansion in ∆ and write gj =

∑
α g

(α)
j ∆α. To

O(∆0), we have ∂g(0)j /∂ϑ
∣∣∣
pφ,ξ

= 0 and hence we learn that

the leading order distribution function, g(0)j , is independent of

ϑ at fixed pφ, i.e. g
(0)
j (ψ,ξ,ϑ,µ,V) = g(0)j (pφ, ξ,µ,V). As we

consider the banana collisionality regime, the collision oper-
ator on the right hand side of equation (9) has been assumed
to be order ∆ smaller than the free streaming.

4
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Proceeding to next order in∆, we obtain in a low beta limit:

1
q

∂g(1)j

∂ϑ

∣∣∣∣∣
pφ,ξ,µ,V

+

+

[
R2

I
(B1 ·∇pφ)+

R2B0

IV∥

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

]
∂g(0)j

∂pφ

∣∣∣∣∣
ξ,ϑ,µ,V

+

+

[
q ′
s

q

(
pφ+

IV∥

ωcj

)
+
R2B2

0

I
∂

∂ψ

∣∣∣∣
ϑ,ξ

(
V∥

ωcj

)
+

+
R2B2

ϑ

I
ϑ ′ ∂

∂ϑ

∣∣∣∣
ψ,ξ

(
V∥

ωcj

)
− R2B0

IV∥

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

]
∂g(0)j

∂ξ

∣∣∣∣∣
pφ,ϑ,µ,V

−

− eZj
mjqV

∂Φ

∂ϑ

∣∣∣∣
pφ,ξ

∂g(0)j

∂V

∣∣∣∣∣
pφ,ξ,ϑ,µ

=
R2B0

IV∥
Cjg

(0)
j . (11)

B1 ·∇ϑ and B1 ·∇ξ have been neglected as higher order
terms in the limit of small magnetic islands8. We note that
∂/∂ψ, ∂/∂pφ ∼ 1/RBϑr when acting on equilibrium quant-
ities and ∂/∂ψ, ∂/∂pφ ∼ 1/RBϑw on perturbed quantities
(∂pφ/∂ψ = 1 to leading order in ρϑj/a). To solve equation

(11) for g(0)j , we have to eliminate the term in g(1)j , integrat-
ing the equation over ϑ at fixed pφ. This is equivalent to an
orbit-averaging procedure. For passing particles, gj is periodic

in ϑ and thus we simply integrate over a period in ϑ, assuming
gj (−π) = gj (π). Trapped particles oscillate between bounce
points, ±ϑb, defined from λB0(ϑb) = 1, where V∥ tends to
zero. Thus, for them we integrate between ±ϑb and sum over
σ, where σ = V∥/

∣∣V∥
∣∣ and λ= 2µ/V2 is the pitch angle. As

continuity is required at each bounce point, this annihilates the

∂g(1)j /∂ϑ
∣∣∣
pφ

term.

To employ the collision operator from [18], we switch from
{µ,V} to {λ,V;σ} in velocity space. Thus, the velocity space
integral and V∥ become:

ˆ
dV= πB

∑
σ

ˆ
R+

V2dV
ˆ B−1

0

dλ

(1−λB)1/2
, (12)

V∥ = σV(1−λB)1/2. (13)

The trapped-passing boundary in pitch angle space is
then located at the inverse of the maximum value of
the magnetic field, i.e. λc = 1/B0 (1+ ε) for the equilib-
rium given above. λ ∈ [0,λc] for passing and λ ∈ (λc,λfin]
with λfin = 1/B0 (1− ε) for trapped particles. There-
fore, an orbit-averaged form of equation (11) reads:

[
q ′
s

q
pφ ·Θ(λc−λ)+ωD−ωE,ξ

]
∂g(0)j

∂ξ

∣∣∣∣∣
pφ,λ,V

+

[〈
R2

I
(B1 ·∇pφ)

〉pφ

ϑ

+ωE,r

]
∂g(0)j

∂pφ

∣∣∣∣∣
ξ,λ,V

=

〈
R2B0

IV∥
Cj

〉pφ

ϑ

g(0)j , (14)

where

ωD =
q ′
s

q

〈
IV∥

ωcj

〉pφ

ϑ

+
1
I

〈
R2B2

0
∂

∂ψ

∣∣∣∣
ξ,ϑ

(
V∥

ωcj

)〉pφ

ϑ

,

ωE,ξ =
1
I

〈
R2B0

V∥

∂Φ

∂ψ

∣∣∣∣
ξ,ϑ

〉pφ

ϑ

, ωE,r =
1
I

〈
R2B0

V∥

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

〉pφ

ϑ

(15)

are the magnetic and E×B drift frequencies in ξ and radial
directions, respectively, toO(ε∆gj)9.Θ denotes the Heaviside
step function. The ϑ-averaging operator at fixed pφ is defined
as:

⟨...⟩pφϑ =

{
1
2π

´ π
−π . . .dϑ, λ≤ λc

1
4π

∑
σ σ
´ ϑb
−ϑb . . .dϑ, λ≥ λc.

(16)

Φ has been assumed to be periodic in ϑ. Using
equation (3), we find

〈
R2 (B1 ·∇pφ)

〉pφ
ϑ
∂g(0)j /∂pφ =

8 A detailed derivation can be found in [39].
9 See appendix A for more detail.

−
〈
R2B0dA∥/dξ

〉pφ
ϑ
∂g(0)j /∂pφ+O(∆2gjRB0) taking ∇pφ =

∇ψ to leading order in ρϑj/a. Due to equation (4),
dA∥/dξ = (ψ̃/R)sinξ for a 2/1 single isolated magnetic island
and thus

〈
R2 (B1 ·∇pφ)/I

〉pφ
ϑ

=−w2
ψq

′
sB0/(4qsBφ)sinξ ·

Θ(λc−λ). Equation (14) is the final orbit-averaged non-
normalised equation for the ion/electron response to O(∆1)
in {pφ, ξ,λ,V;σ} space. Following [18], we close our sys-
tem by taking a collision operator that conserves particles and
momentum, i.e.Cj is given by equation (62) of [18] and retains
like-particle and electron-ion collisions.

4. Plasma quasi-neutrality and electrostatic
potential

We adopt a Maxwell–Boltzmann equilibrium and so we
obtain:

n̂i/e = 1∓ δΦ̂+ δn̂i/e (17)

for the ion/electron density integrating equation (10)
over velocity space. Here n̂j = nj/n0, δn̂j = δnj/n0 and
δΦ̂ = eδΦ/Tj provided Zi= 1 and Te = Ti (this assumption

5
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is maintained throughout the paper unless otherwise stated).
δnj is the perturbed density associated with gj. Thus, balancing
the electron and ion densities, we find:

δΦ̂ =
δn̂i− δn̂e

2
(18)

for the perturbed potential. We adopt an iteration process
such that at each iteration step, k, we solve δΦ̂(k+1) =

(1/2)
(
δn̂(k)i − δn̂(k)e

)
, where δn̂(k)i,e = δn̂(k)i,e (δΦ̂

(k)) are ion and

electron densities for δΦ̂ = δΦ̂(k). The iteration proceeds until
δΦ̂(k+1) = δΦ̂(k) to some defined accuracy. Thus, in contrast
to [37], we allow the restoration of the density/temperature
gradient across the magnetic island to be influenced by both
ions and electrons.

5. Reduced drift kinetic formulation for low
collision frequency

5.1. Drift islands

To analyse equation (14) further, we introduce the following
dimensionless system:

ρ̂ϑj =
IVTj
ωcjwψ

, x=
ψ−ψs
wψ

, V̂∥j =
V∥

VTj
, V̂j =

V
VTj

,

L̂−1
q =

q ′
s

q
ψs, L̂−1

B =
ψs
B
∂B
∂ψ

, ŵ=
wψ
ψs
, ψ̂ =

ψ

wψ

Φ̂ =
eΦ

Tj (ψs)
, p̂φ = x− ρ̂ϑjV̂∥ (19)

(note: λ is kept non-normalised and we adopt the convention
ψ= 0 at the magnetic axis). Employing the large aspect ratio,
circular cross section tokamak approximation, assuming that
the fastest radial variation is in perturbed quantities and taking
∂p̂φ/∂ψ̂ = 1 to leading order in ρϑj/a, we derive:[

ŵ

L̂q
p̂φ ·Θ(λc−λ)− ρ̂ϑjω̂D −

− ∂

∂p̂φ

∣∣∣∣
ξ,ϑ

1
2

〈
ρ̂ϑj

V̂∥
Φ̂

〉pφ

ϑ

]
∂g(0)j

∂ξ

∣∣∣∣∣
S,λ,V

= Ĉjg
(0)
j , (20)

from equation (14), where the stream function, S, is

S=
ŵ

4L̂q

2(p̂φ− ω̂Dρ̂ϑjL̂q
ŵ

)2

− cosξ

Θ(λc−λ)−

− ω̂Dρ̂ϑjp̂φΘ(λ−λc)−
1
2

〈
ρϑj

V̂∥
Φ̂

〉pφ

ϑ

. (21)

Here ω̂D and Ĉjg
(0)
j denote the normalised forms of ωD and

the right hand side of equation (14) [39]. Their explicit repres-
entations can be found in appendix B, where we show that Ĉj
contains the pitch angle scattering and diffusion in S space. S is
to be treated as a new radial coordinate. We note that, in con-
trast toψ or pφ, S has a different representation for passing and

trapped particles; this will provide a complication for match-
ing at the trapped-passing boundary, λ=λc.

Equations (20) and (21) complete the transformation from
{pφ, ξ,λ,V;σ} to {S, ξ,λ,V;σ}, and the particle distribu-

tion function is now to be found as g(0)j = g(0)j (S, ξ,λ,V;σ).
According to its definition, S is a function of pφ, ξ, λ and V for
each σ, and depends on the form of the electrostatic potential,
which is, in turn, a function ofψ, ξ and ϑ. For passing particles
in the absence of the electrostatic potential, i.e. when theE×B
drift effects are ignored, the contours of constant S reproduce
the magnetic island structure given by the constant Ω con-
tours (see equation (6)) but have a radial shift by the amount
ω̂Dρ̂ϑjL̂q/ŵ+ ρ̂ϑjV̂∥, which is proportional to the poloidal Lar-
mor radius. This shift arises from ∇B and curvature tokamak
drifts, and as ω̂D is σ-dependent in the passing branch, the shift
is in opposite directions for V∥ ≷ 0. We refer to these island
structures in the contours of constant S as drift islands. Inclu-
sion of Φ, in principle, might modify the structure of constant
S contours. However, the electrostatic potential calculated iter-
atively to ensure plasma quasi-neutrality does not add any sig-
nificant qualitative modifications to the form of S; specifically,
the surfaces of constant S in the (x, ξ) plane are island-like for
passing and open for trapped particles even with Φ included.
Examples for passing particles are shown in figure 1 for (a)
ρϑi/w= 0.05≪ 1 and (b) ρϑi/w= 0.4. A similar drift island
structure in view of plasma tokamak transport has been iden-
tified by Kadomtsev in [40], where the chains of islands much
smaller than ρϑi but larger than ρϑe are considered.

To solve equation (20) for g(0)j as a function of S, we
employ weak collisional dissipation. In the reference frame
in which the equilibrium radial electric field is zero, this
is equivalent to imposing δi ≡ νii/εk∥VTi ≪ 1 for ions and
δe ≡ νe/εk∥VTe ≪ 1 for electrons. Employing the perturba-
tion theory again, and applying an expansion in δj, we obtain

∂g(0,0)j /∂ξ
∣∣∣
S,ϑ

= 0 to leading order. From this we learn that

g(0,0)j is independent of ξ at fixed S, i.e. g(0,0)j (pφ, ξ,λ,V;σ) =

g(0,0)j (S,λ,V;σ). Thus, we find that the particle distribution
function is constant along these S streamlines in the absence
of collisions. Proceeding to next order in δj and introducing
collisions, we derive:

A
∂g(0,1)j

∂ξ

∣∣∣∣∣
S,ϑ,λ,V

= Ĉjg
(0,0)
j , (22)

where A denotes the coefficient in front of ∂g(0)j /∂ξ
∣∣∣
S,ϑ,λ,V

on the left hand side of equation (20). Equation (22) allows us
to reconstruct the actual form of the ion/electron distribution,
i.e. its S and λ dependence. To eliminate the term in g(0,1)j ,
we divide both sides of equation (22) by A and introduce
the annihilation operator similar to equation (16) to provide
ξ-averaging at fixed S. For open contours (i.e. for passing
particles outside the drift island and for trapped particles), we
integrate equation (22) over a period in ξ, imposing periodicity
at ξ=±π. For closed contours, i.e. passing particles inside the
drift island, we integrate between the ξ-bounce points given by

6
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Figure 1. Contours of constant S in the (x, ξ) plane in the absence of the electrostatic potential, Φ̂ = 0, for (a) w/ρϑi = 20
and (b) w/ρϑi = 2.5. Parameters are λ/λc= 0.92, ε= 0.1, V =VTi, σ=+1, L̂q = 1. Green dashed line indicates the position of the magnetic
island separatrix, Ω= 1. The S island separatrix is at S= Sc = ŵ/4L̂q (black dashed line).

Figure 2. Sketch of the ion distribution function vs. p̂φ at λ/λc= 0.98, ξ= 0 for (a) w/ρϑi = 20 and (b) w/ρϑi = 2.5. g(0)i is normalised to
neqm/(π3/2V3

Ti). ε= 0.1, L̂q = 1. Ion density/temperature length scales, Ln/LTi= 1. p̄φ(σ) = ω̂D(σ)ρ̂ϑiL̂q/ŵ. Dashed lines indicate the
σ=±1 passing ion distribution function, g(0),σi , while solid line represents 1

2

∑
σ g

(0),σ
i . The σ=±1 drift islands are centred around

p̄φ(σ =±1), denoted by grey vertical lines. The magnetic island is located between them; p̂φ =±1 corresponds to the separatrix of the
magnetic island.

ξb1,2 = ξb1,2 (S,pφ0,λ,V;σ), where pφ0 is the stationary point
of S= S(pφ) for each ξ, λ, V and σ, and also sum over the two
sides of the closed contours, σpφ =±1, where σpφ is the sign
of pφ− pφ0. Continuity at each ξ-bounce point then eliminates

g(0,1)j . Thus, equation (22) reduces to:

〈
Ĉj
A

〉S

ξ

g(0,0)j = 0 (23)

with the ξ-averaging operator at fixed S being defined as:

⟨...⟩Sξ =

{
1
2π

´ π
−π . . .dξ, S≥ Sc

1
4π

∑
σpφ

σpφ
´ ξb,2
ξb,1

. . .dξ, S< Sc
(24)

for passing (Sc denotes the drift island separatrix and is to be
updated at the end of each iteration in Φ for passing particles)

and:

⟨. . .⟩Sξ =
1
2π

ˆ π

−π
. . .dξ (25)

for trapped particles. The explicit form of the
〈
Ĉj/A

〉S
ξ
oper-

ator is discussed in appendix B. From the S island formal-
ism we learn that while collisions are neglected in equation
(20), the combined effect of the parallel streaming, ∇B and
curvature drifts would force the passing particle distribution
to be flattened inside these drift islands rather than the actual
magnetic island. Introducing collisions at next order fully
determines the perturbed distribution function via equation
(23) and the results of appendix B. This provides a physics
basis for the NTM threshold by reducing the neoclassical drive
for NTMs of width w∼ ρϑi when the radial shift in the con-
tours of constant S, compared to Ω, is significant.

7
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A schematic ion distribution function vs. p̂φ is shown in
figures 2(a) and (b) at small and large ρϑi/w. At small ρϑi/w
and hence small radial shift in S, equation (21), a sum of the
ion distribution functions over σ=±1 is found to be flattened
inside the magnetic island in the vicinity of p̂φ = 0. From
equation (12), this would result in flattening of the ion dens-
ity profile around the magnetic island O-point for ρϑi/w≪ 1.
In contrast, when the radial shift of the drift islands com-
pared to the magnetic island becomes significant, the flatten-
ing of

∑
σ g

(0),σ
i and hence the density flattening are removed

from inside the magnetic island, e.g. ρϑi = 7.0× 10−3rs is
sufficient to partially restore the density gradient across the
magnetic island of width w= 0.02rs. If ρϑi/w≳ 1, the pro-
file will be further steepened across the O-point. This res-
ults in the density gradient being restored in the vicinity of
the island O-point. The corresponding density profiles are
shown in figure 3. We highlight that the gradient inside the
magnetic island is a consequence of the drift island struc-
tures, and thus is a property of the passing (and not trapped)
particles.

For electrons, the radial shift in equation (21) is small
as ρϑe ≪ ρϑi. Hence, the drift island effect is less signific-
ant for the electron distribution function. This creates a sig-
nificant difference in the electron and ion density profiles
especially at large ρϑi in the absence of the electrostatic poten-
tial. Indeed, when ρϑi/w≪ 1, the ion and electron dens-
ity gradients are both removed from inside the magnetic
island due to strong parallel streaming along perturbed flux
surfaces, so there the role of Φ is not crucial. In contrast,
when ρϑi and w are comparable, a non-zero, finite ion dens-
ity gradient is sustained around the magnetic island O-point,
while the electron density gradient is still removed in the
absence of any potential due to the strong electron paral-
lel streaming and ρϑe ≪ w. However, to maintain plasma
quasi-neutrality, the electrostatic potential is required, which
adjusts to provide ni ≈ ne. Hence, the ion density steepen-
ing at large ρϑi is explained by the radial shift in S given by
equation (21), while the sustainability of the electron dens-
ity gradient is associated with the self-consistent electrostatic
potential.

The particle flow along the field lines is u∥j =

n−1
0

´
gjV∥dV, and thus

∑
σ σg

(0),σ
i represents the paral-

lel flow moment due to equations (12) and (13). The main
contribution to the flow is provided by passing particles
due to the summation over σ in the ϑ-averaging operator
introduced for trapped particles, equation (16). However,
the trapped branch also contributes as the integration here
is imposed at fixed ψ, and the trapped particle distribu-
tion function is g(0)i (p̂φ, ξ,λ, V̂) = g(0)i (ψ̂, ξ,ϑ,λ, V̂;σ) with
p̂φ = x− ρ̂ϑiV̂∥ = x−σρ̂ϑiV̂

√
1−λB(ϑ).

In figure 4 we show contours of the parallel component
of the ion flow, u∥i, at different ρϑi/w in the (ψ, ξ) plane. In
figure 4(a) for the smallest ρϑi/w= 0.05, u∥i is flattened and
zero across the magnetic island O-point in accordance with
the conventional picture when the neoclassical flow experi-
ences a hole around the island O-point. In figures 4(b)–(d),
corresponding to larger ρϑi/w, there is a non-zero contribution

Figure 3. Radial density profile across the magnetic island O-point
(ξ= 0) for different ρϑi. w= 0.02rs, ε= 0.1, L̂q = 1, ion
collisionality ν∗i = 10−4. Dashed line indicates the axisymmetric
equilibrium density profile, ∝ L−1

n ŵψ̂, Φ ′
eqm = 0. Here neqm is the

equilibrium density, i.e. in the absence of the magnetic island.

to
∑
σ σg

(0),σ
i inside the island and thus there is some flow

that penetrates into the island. This contribution grows with
growing ρϑi/w and spreads further into the island, which
provides the basis for an NTM threshold. The corresponding
ϑ-averaged parallel component of the current density that con-
tributes to equation (7) is shown in figure 5 for small and large
ρϑi/w. The corresponding electrostatic potential is shown in
figure 6.

5.2. Dissipation layer in the vicinity of the trapped-passing
boundary

The perturbative approach we applied above in section 5 to
eliminate the ξ-dependence at fixed S breaks down in a dissip-
ation layer, i.e. a narrow region in pitch angle in the vicinity
of the trapped-passing boundary, λ=λc (see figure 7). Here
collisional dissipation becomes comparable to parallel stream-
ing, νii/e∂ 2/∂λ2 ∼A∂/∂ξ|S, due to a steep gradient in λ,
and thus a full solution of equations (14)/(20) is required in
the layer, close to λ=λc. This steep gradient region arises
because the different orbit-averaging procedures for passing
and trapped particles produce a discontinuity at λ=λc, and
the layer resolves this discontinuity.

Following [18], we impose the matching conditions
given by equations (106)–(108) of [18] at the trapped-
passing boundary to provide continuity of the particle
distribution function and its first λ derivative across the
boundary. We note that originally matching is imposed
at fixed ψ. However, switching from ψ to S and solv-
ing equation (23) at the 0th iteration in Φ, we find
g(0,0)j = g(0,0)j (S,λ,V;σ) = g(0,0)j [S(pφ, ξ,λ,V;σ) ,λ,V;σ] for

the leading order passing and g(0,0)j = g(0,0)j (S,λ,V;σ) =

g(0,0)j [S(pφ,λ,V;σ) ,λ,V;σ] for the leading order trapped
particle distribution. The different forms for S in the
passing/trapped regions do not allow continuity of the particle
distribution across the trapped-passing boundary at fixed

8
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Figure 7. Leading order ion distribution function g(0,0)i vs. pitch
angle, λ, at pφ = 1.475w, ξ= 0, w= 0.02rs, ρϑi = 1.0× 10−3rs,
ν∗i = 10−4, ε= 0.1, L̂q = 1. g(0,0)i is normalised to neqm/(π3/2V3

Ti).
Inset: a full solution of equation (20) in a collisional layer around
λc. The trapped branch solution is σ-independent at fixed p̂φ due to
the summation over σ in equation (16).

pφ/ψ without introducing the layer explicitly. The introduc-
tion of this layer allows the particle distribution to vary
on S contours and hence provides the freedom to impose
the matching conditions, equations (106)–(108) of [18],
at λ=λc.

Taking into account the narrowness of the dissipation layer,
we fix all the coefficients in equation (14) at λp/t ≡ λc∓ ϵ,
where ε is the width of the layer. This is then equivalent to
equation (20) with coefficients evaluated at λp/t and S being
replaced with S= Ŝ+ ∂λSλp/t

(
λ−λp/t

)
, where Ŝ= S(λp/t).

Exploiting the thinness of the layer again, we write:

∂

∂λ

∣∣∣∣
ψ

≃ ∂

∂λ

∣∣∣∣
pφ

=
∂

∂λ

∣∣∣∣
Ŝ

,

and thus within the layer our equation for g(0)j becomes:

A
(
Ŝ, ξ,λp/t,V;σ

) ∂g(0)j

∂ξ

∣∣∣∣∣
Ŝ,ϑ,λ,V

= ν̂j
2

V̂
a
(
λp/t

) ∂2g(0)j

∂λ2

∣∣∣∣∣
Ŝ

.

(26)

Here ν̂j is to be understood as νii/VTi for ions and
(νee+ νei)/VTe for electrons, and a is defined as〈
σλ(1−λB)1/2R/Bφ

〉pφ
ϑ
. Similar to [41], we replace ξ with

an angle variable, γ±/t, defined below, and hence equation
(26) can be reduced to a simple diffusion equation:

∂g(0)j

∂γ±/t

∣∣∣∣∣
Ŝ

= D±/t ∂
2g(0)j

∂λ
2

∣∣∣∣∣
Ŝ

, (27)

where D±/t = (2ν̂j/V̂)a
(
λp/t

)
for passing, σ=±1, and

trapped branches. Here we have introduced:

γout(±)/t =
σpφ´ π

−π
dξ

2π|A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ,V;σ

) (28)

for passing particles outside the Ŝ island and for trapped
particles. For passing particles inside the Ŝ island,

γin(±) =
1´ ξb

−ξb
dξ
π|A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ,V;σ

) , σpφ > 0 (29)

and

γin(±) = π− 1´ ξb
−ξb

dξ
π|A|

ˆ ξ

0

dξ ′

A
(
Ŝ, ξ,V;σ

) , σpφ < 0.

(30)

γ±/t has the same features as the angle variable intro-

duced in [41]. λ=

[〈
A−1

〉Ŝ
ξ

]−1/2

(λ−λc) is a new pitch

angle variable. λ= 0 defines the trapped-passing boundary;
λ≶ 0 corresponds to the passing/trapped region, respect-
ively. In contrast to [18], our layer solution includes both
regions inside and outside the magnetic island. Equation
(27) allows an analytic solution of the Fourier form:

g(0)j =
∑

n≥0C
±/t
n e

i+1√
2

√ n

D±/t λeinγ
±/t

with C±/t
n = a±/tn +

ib±/tn . The Fourier coefficients, a±/tn , b±/tn (n≥ 0), are
unknown and to be found from matching at λ= 0:

H+ +
∑
n>0

{
a+n cosnγ+ − b+n sinnγ+}=

= H− +
∑
n>0

{
a−n cosnγ− − b−n sinnγ−}=

= Ht+
∑
n>0

{
atn cosnγ

t− btn sinnγ
t},

∑
n>0

cosnγ+

√
n

2D+

[
a+n − b+n

]
− sinnγ+

√
n

2D+

[
a+n + b+n

]
+

+
∑
n>0

cosnγ−
√

n
2D+

[
a−n + b−n

]
+ sinnγ−

√
n

2D+

[
a−n − b−n

]
=

= 2
∑
n>0

cosnγt
√

n
2Dt

[
btn− a

t
n

]
+ sinnγt

√
n
2Dt

[
atn+ btn

]
.

(31)

H±/t represents a sum of the drive term/contribution from
outside the layer and the 0th harmonic, a±/t0 [39]. Equation
(31) is a set of three equations for 6N+ 3 unknowns,
n ∈ [0,N], where N represents the Fourier harmonics retained.
Due to a difference in γ±/t, matching at fixed ψ/pφ cannot
be provided in n space in the presence of Φ. However, γ±/t

and n are conjugated variables, and γ±/t is connected with
ξ via equations (28)–(30). Thus, taking a number of points

in ξ space Nξ = 2 N+ 1 and treating γ±/t = γ±/t
(
Ŝ, ξ,V

)
=

γ±/t
[
Ŝ(p̂φ, ξ,V) , ξ,V

]
, we solve equation (31) numerically
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for a±/tn , b±/tn , providing matching at fixed pφ and ξ. Substi-
tuting the obtained Fourier coefficients into the above analytic
solution in the layer provides matching across the trapped-
passing boundary and is then to be used to provide the bound-
ary condition required to solve for g(0,0)j from equation (23).

In previous sections we have outlined the derivation of the
orbit-averaged drift kinetic equation to leading order in ∆
for ions and electrons that takes into account the electrostatic
potential consistent with the plasma quasi-neutrality condi-
tion. Two numerical codes have been developed. One of them
finds a solution of equation (14), which is a function of pφ, ξ
and λ and keeps collisions at leading order for a full range of
λ variation. This is to be referred to as the DK-NTM solution
and is explained in [36] and [42]. To introduce the drift islands
explicitly for both electrons and ions and to efficiently resolve
the collisional dissipation layer, the RDK-NTM solver has
been developed to describe low collision frequency regimes
[39]. It finds a solution of the reduced orbit-averaged drift kin-
etic equation to leading order in ∆, i.e. equation (14) in the
dissipative layer and equation (23) outside the layer with the
electrostatic potential consistent with plasma quasi-neutrality.
The RDK-NTM numerical algorithm is described in [39]. The
numerical results presented in this paper are provided by the
RDK-NTM code. In appendix Cwe compare results from both
models.

6. Neoclassical drive for NTMs

We can now return to equation (1) and consider how J∥ con-
tributes to the evolution of the magnetic island width. We note
that equation (7) is equivalent to equation (1) provided a single
isolated stationary NTM magnetic island is considered. Thus,
for the stationary island, the classical tearing mode stability
parameter, ∆ ′, is balanced against the sum of all the neoclas-
sical contributions,∆ ′ +∆neo = 0, where:

∆neo =−µ0R

2ψ̃

ˆ
R
dψ
ˆ π

−π
dξJ̄∥ cosξ. (32)

Using the obtained ion/electron distribution function, we cal-
culate J∥ =

∑
j eZju∥j. Defining the polarisation current dens-

ity as the part of the parallel current density perturbation that
flux surface averages to zero, we write:

∆bs+∆cur =−µ0R

2ψ̃

ˆ
R
dψ
ˆ π

−π
dξ
〈
J̄∥
〉Ω
ξ
cosξ (33)

for the sum of the bootstrap and curvature contributions and
hence,

∆pol =∆neo− (∆bs+∆cur) (34)

for the polarisation term. Here the ξ-averaging operator at
fixed Ω is defined as:

⟨. . .⟩Ωξ =

¸
. . .(Ω+ cosξ)−1/2dξ¸
(Ω+ cosξ)−1/2dξ

, (35)

Figure 8. The sum of the bootstrap and curvature contributions to
the MRE, ∆bs+∆cur, vs. w for different values of the ion poloidal
Larmor radius, ρϑi, calculated with the RDK-NTM code. The
dashed line is the analytic result for the bootstrap current
contribution, valid in the limit of large magnetic island widths [18].
Here wc, defined as a solution of ∆bs+∆cur = 0, represents a
magnetic island threshold, also called a critical magnetic island
half-width. ε= 0.1, L̂q = 1, L−1

B = 0, ν∗i = 10−3. The equilibrium
density and temperature gradients are Ln/LTj = 1, Φ ′

eqm = 0. Inset:
wc plotted against ρϑi (w, wc and ρϑi here are in rs units).

similar to equation (24). As we mentioned earlier, we focus
on a large aspect ratio, circular cross section tokamak approx-
imation here, and employ our 3D RDK-NTM code to ana-
lyse the threshold physics. Since ∆cur =O(ε2), it does not
provide a significant contribution to the threshold obtained in
this work. In particular, ∆bs+∆cur reduces to the bootstrap
current contribution for magnetic islands in the limit of large
widths, w≫ ρϑi.

In figure 8 we plot ∆bs+∆cur against w. In the limit of
w≫ ρϑi, ∆bs+∆cur is inversely proportional to w, which is
expected from the existing analytic theory, e.g. equation (85)
of [18]. When w tends to zero, ∆bs+∆cur becomes negative,
providing a threshold for NTMs, i.e. a value of w below which
the mode is stable, ∆bs+∆cur < 0. This value is denoted
by wc and is to be referred to as the critical magnetic island
half-width. wc is different for each ion poloidal Larmor radius
and hence can be defined as a function of ρϑi. This kind of
behaviour at w∼ ρϑi is the direct result of the inclusion of
the drift islands in our model and is in agreement (qualitative
and quantitative) with experimentally observed self-healing
of small magnetic islands below the threshold (e.g. [33]).
A straight line fit shown in the inset of figure 8. provides
wc = 0.46ρϑi and in terms of the ion banana width
wc = 1.47ρbi at ε= 0.1 (here wc, ρϑi and ρbi are nor-
malised to rs). wc/ρϑi as a function of ε is shown in
figure 9, which indicates that the banana width is the
appropriate measure. Recall that experimentally it was
found that the full critical magnetic island width is
between (2, 3)ρbi, so this result is in the right vicinity.
In previous work [36] we found a much larger threshold

13



Plasma Phys. Control. Fusion 63 (2021) 054001 A V Dudkovskaia et al

Figure 9. wc/ρϑi as a function of ε. The parameters are chosen as
in figure 8. wc here is based on the bootstrap contribution only. The
ε1/2 behavior provides the best fit.

wc ≃ 9ρbi, but there we had a larger magnetic drift
frequency—the value chosen here, with L−1

B = 0, is closer
to the experimental case10. This highlights an additional sens-
itivity of wc to LB.

When the island propagation frequency is close to zero,
the polarisation current contribution is expected to be small.
Indeed, we find that inclusion of ∆pol at ω= 0 does not shift
the threshold significantly falling slightly towc = 1.41ρbi. The
latter is obtained in the conventional tokamak geometry with
ε= 0.1 in the absence of the Shafranov shift, plasma elong-
ation and triangularity (equilibrium density and temperature
gradients are Ln/LTj = 1 with Φ ′

eqm = 0). The threshold we
derive is the result of the radial shift of drift islands described
by the S function, equation (21), and, in particular, the pres-
sure gradient restoration across the magnetic island O-point
at w∼ ρϑi. As discussed in section 5, the latter mainly arises
from the behaviour of the σ-dependent part of the ion distribu-
tion function,

∑
σ g

(0,0),σ
i , at small w. Therefore, we emphas-

ise that this threshold physics is related to passing particle
dynamics, and not the finite bananawidth effects of the trapped
particles.

7. Summary and conclusions

To summarise, a new drift kinetic theory of magnetic islands,
valid for w∼ ρϑi, has been developed in a low collisionality
plasma. The electron/ion distribution function is found to be
flattened across the so called drift islands, which are radially
shifted by a value, proportional to ρϑe/i/w, compared to the
magnetic island. This, in turn, results in a density gradient
being sustained across a magnetic island of width comparable
to the ion poloidal Larmor radius,w≲ ρϑi. For ions, their finite

10 As shown in appendix A, the (1/B)∂B/∂ψ term is ε times smaller than the
rest of the terms kept in equations (14) and (15). Therefore, L−1

B = 0 provides
results, close to the case when the actual ϑ dependence is maintained in LB,
which we can see from figure 8.

Figure 10. The full critical magnetic island width, wc, as a function
of the ion poloidal Larmor radius, ρϑi. The red dashed line is the
best fit line that provides the approximation. wc and ρϑi are
normalised to the radius of the rational surface, rs. The parameters
are chosen as in figure 8.

density gradient at the centre of the magnetic island is the con-
sequence of the effect of the drift islands, i.e. the relatively
large radial shift in equation (21). While the electron radial
shift is small since ρϑe ≪ ρϑi, their density gradient is still
present across the magnetic island O-point due to the effect
of the electrostatic potential that is generated to ensure plasma
quasi-neutrality.

This gradient is found to suppress the drive for NTMs when
w is small, providing the critical magnetic island width, below
which NTMs decay. We note that this physics is associated
with the passing particle dynamics and not the effects of the
finite banana orbit width. In this sense, the relevant parameter
for the NTM threshold would be the ion poloidal Larmor
radius. However, we find that in addition to the linear depend-
ence of wc on ρϑi, wc also scales with the inverse aspect ratio
as ε1/2 . This indicates that the threshold is also influenced by
the trapped particles—this is physics that we do not yet fully
understand. For the small inverse aspect ratio circular poloidal
cross section tokamak, it scales as wc = 0.45ρϑi at ε= 0.1 in
the island rest frame. This provides wc = 1.41ρbi, if written in
terms of the ion banana orbit width. This result is in quantit-
ative agreement with the previous experimental observations,
e.g. [33].

If we consider contours of the total density, obtained
with the self-consistent electrostatic potential and differenti-
ated with respect to ψ, we notice that these contours in the
(ψ, ξ) plane would reproduce the contours of the flow par-
allel to the field lines. This changes abruptly with ρϑi/w,
as can be seen from figures 4(a)–(d). Therefore, compar-
ing the total density profiles that contain the magnetic island
perturbation against the experimental density profiles for a
large magnetic island and for a small island near the mar-
ginal stability might be one of the steps to check the valid-
ity of the drift island concept as an explanation of the
threshold, wc.
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The theory presented here provides a prediction for the
magnetic island threshold obtained in the conventional toka-
mak limit in the island rest frame. However, as mentioned
above, the theory presented in this paper is subject to certain
limitations. One of them is the boundary layer around the drift
island separatrix. In this layer, the transport terms will become
comparable to the parallel streaming, i.e. the left hand side
of equation (20), νii/e∂ 2/∂S2 ∼A∂/∂ξ|S. This layer can be
treated in a similar way to the collisional dissipative layer at the
trapped-passing boundary, which we considered in section 5
by exploiting its thinness. However, as the drift islands are
shifted radially relative to the magnetic island by an amount
that varies with V∥ and is proportional to ρϑj, this might result
in a broader layer around the magnetic island for the electro-
static potential, being spread over a width comparable to ρϑj. It
is this layer in the potential that influences the polarisation cur-
rent when ω is not equal to zero. We will present this in future
publications, extending existing theories of the separatrix layer
[21, 22, 29, 30]. A special challenge is where both boundary
layers overlap,A∂/∂ξ|S ∼ νii/e∂

2/∂λ2 ∼ νii/e∂
2/∂S2. How-

ever, since this area is very narrow in the low collisionality
plasma, we can fix all the coefficients in the full equation,
equation (14), and thus find the solution even in the presence
of the electrostatic potential in a way similar to section 5. The
obvious advantage of this method, employed in RDK-NTM,
is that it allows us to obtain the solution with sufficient res-
olution in these narrow boundary regions. Another option to
deal with the separatrix layer in S space is to solve equation
(14) for the full 4D distribution function as a function of pφ, ξ
and λ at each V. This is the DK-NTM approach, presented in
appendix C. However, as mentioned above, it is then difficult
to efficiently resolve both layers simultaneously and there are
numerical limits to how small we can take ν j or ρϑi/w. For
the collision operator employed in this paper, which captures
aspects of neoclassical transport, the thinness of the boundary
layer that surrounds the drift island is provided by low ν ii/e.
More generally, the cross-field transport will be driven by tur-
bulence, and then the layer physics will be much more com-
plicated to capture, especially as the island and the layer length
scales become comparable to turbulent eddy size—this will
become a challenging multiscale numerical problem. Both the
3D and 4D approaches have their benefits and drawbacks, and
both require extra development to refine the treatment of the
separatrix layers. We highlight that while the proper treatment
of the separatrix boundary layer is necessary for calculating
accurately the layer contribution to the polarisation current,
this does not influence the bootstrap current. Thus, the res-
ult presented here for the NTM threshold when the island is
at rest in the plasma E×B reference frame is expected to be
robust.

The second problem that is beyond the scope of this paper
is the calculation of the island rotation frequency [39]. This is
associated with the dissipation processes in the plasma. In [39]
it is found from the solution in the dissipation layer around the
trapped-passing boundary, provided it is the main source of
dissipation. Potentially, there might be an extra contribution

from the separatrix layer and thus is to be further investigated.
While the bootstrap current perturbation described here is
not expected to depend on the island propagation frequency,
the polarisation current will, and this could influence the
threshold.

Another problem to be addressed in the future is the
curvature contribution to the island evolution. The drift kin-
etic equation presented in this paper is correct to O(ε2∆gj),
which is already sufficient to find ∆cur. The more accurate
calculation, though, would also require theO(ε2∆2gj) terms.
We highlight that while the effects of the plasma shaping are
weak in conventional devices, they would be more important
for spherical tokamaks and potentially further enhance the sta-
bilising mechanisms that provide a threshold.
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Appendix A. The O(ε2(5/2)∆gj) form of equation
(14). Expression for ∂B/∂ψ

The general form of equation (14) is:

q ′
s

qs
pφΘ(λc−λ)

1⃝
+
q ′
s

qs

〈
IV∥

ωcj

〉pφ

ϑ
2⃝

+

+

〈
B2

B2
φ

I
ωcj

∂B
B∂ψ

V∥
3⃝
+
λBV2

2V∥
4⃝

〉
pφ

ϑ

+

+

〈
R2B2

ϑ

I
ϑ ′ ∂

∂ϑ

∣∣∣∣
ψ,ξ

(
V∥

ωcj

)〉pφ

ϑ
5⃝

−

〈
R2B
IV∥

∂Φ

∂ψ

∣∣∣∣
ϑ,ξ

〉pφ

ϑ
6⃝

×
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×
∂g(0)j

∂ξ

∣∣∣∣∣
pφ,ϑ

+

〈R2

I
(B1 ·∇pφ)

〉pφ

ϑ
7⃝

+

+

〈
R2B
IV∥

∂Φ

∂ξ

∣∣∣∣
ψ,ϑ

〉pφ

ϑ
8⃝

 ∂g(0)j

∂pφ

∣∣∣∣∣
ϑ,ξ

=

〈
R2B
IV∥

Cj

〉pφ

ϑ

g(0)j

(A1)

to O(ε2(5/2)∆gj), which can be obtained directly from
equation (11)11. The rest will provide the O(∆2gj) or smaller
corrections. Here the second term in equation (15) has been
rearranged using:

∂

∂ψ

∣∣∣∣
ϑ,ξ

(
V∥

B

)
=− 1

B
∂B
∂ψ

(
λV2

2V∥
+
V∥

B

)
.

For ∂B/∂ψ we have,

∂B
∂ψ

=
I′

R
− I
R2

∂R
∂ψ

with I ′ ∼ R2p ′/I and hence I ′/R∼ β/r2. Thus, in a low beta
limit, we find,

∂B
∂ψ

=− Bφ
R2
0Bϑ

cosϑ+O(ε2/r2) (A2)

with R=R0(1+ εcosϑ) taken for the model major radius.
Estimating each of the terms in equation (A1), we find,

1⃝+ 2⃝∼ q′s
qs

〈
pφ+

IV∥

ωcj

〉pφ

ϑ

∂gj
∂ξ

∼ q′s
qs

m− nq
−nq′s

gj

∼
(
1− q

qs

)
gj ∼∆gj,

3⃝∼ 4⃝∼ ε∆gj,

2⃝∼ ε2∆gj,

6⃝∼ 7⃝∼ 8⃝∼∆gj.

Here ∂ϑ(V∥/ωcj)∼ ∂ρϑj/∂ϑ∼ ερϑj for passing and∼ ε3/2ρϑj
for trapped particles. Omitting the O(ε2∆gj) corrections in
∂B/∂ψ and in equation (A1), we find equation (14).

Appendix B. Collision operator averaging

Rewriting equation (14) in terms of the normalised quantit-
ies given by equation (19), we obtain equations (20) and (21),
where the dimensionless magnetic drift frequency is:

ω̂D =− ŵ

L̂q

〈
V̂∥

〉pφ
ϑ

+

〈
B2

B2
φ

ŵ

L̂B

[
V̂∥ +

λV̂2

2V̂∥
B

]〉pφ

ϑ

. (B1)

We employ the same collision operator, Cj, as described in
equations(62) of [18], i.e.

11 ε5/2 corresponds to trapped particles.

Cjgi = νj (V)

[
2
(1−λB)1/2

B
∂

∂λ

∣∣∣∣
ψ

(
λ(1−λB)1/2

∂gj
∂λ

∣∣∣∣
ψ

)
+

+
V∥û∥j(gj)

V2
Tj

fMj

]
. (B2)

For ions, νi = νii (V) = νii (VTi)(VTi/V)
3 and the momentum-

conserving flow term is û∥i = u∥i (gi). Ion-electron collisions
are small and hence neglected. For electrons, νe = νee (V)+
νei (V) with νej (V) = νej (VTe)(VTe/V)

3, j= e, i, and the
flow term is û∥e = (νee/νe)u∥e(ge)+ 2(νei/νe)u∥i (gi). Here
we have introduced u∥j = (3π1/2)/(2neqm)V3

Tj

´
dVgjV∥/V3,

j= e, i, and u∥i was defined in section 5.
Since ∂/∂λ|ψ and ⟨...⟩pφϑ are not commutative, we trans-

form the pitch angle derivatives, using
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(B3)

and
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(B4)

with ∂p̂φ/∂λ|ψ ≡ pλ (ϑ,λ,V;σ). Equation (B3) allows us to
write: 〈
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Then applying equation (B4) to switch from p̂φ to S, we obtain:
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Here
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∣∣∣∣
λ,ξ

(
∂S
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p̂φ

)
+
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ρ̂ϑj
2
V̂R
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∂S
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∣∣∣∣
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,

CλS=2
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1−λB R
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∂S
∂λ

∣∣∣∣
p̂φ,ξ

+
〈
ρ̂ϑjV̂Rλ

〉pφ
ϑ

∂S
∂p̂φ

∣∣∣∣
ξ,λ

.

The first two terms in equation (B6) will provide
the pitch angle scattering in S space, while the other
three terms are responsible for transport across surfaces of
fixed S. Substituting equation (B6) into the above colli-
sion operator provides Ĉj and hence the collisional con-
straint in S space, equation (23). After multiplying both
sides of equation (23) by V̂/2ν̂ii, the momentum conservation

terms in equation (23) become V̂i
2

〈
1
A Ū∥i(g

(0,0)
i )

〉S
ξ
for ions

and V̂e
2

〈
1
A Ū∥e(g

(0,0)
e )

〉S
ξ
+ V̂e

2

〈
1
AU∥ei(g

(0,0)
i )

〉S
ξ
for electrons,

V̂j = V/VTj. Here

Ū∥i(g
(0,0)
i ) =

3
2
e−V̂

2
i

〈
RB0

∑
σ

σ

ˆ
R+

dV̂i

ˆ B−1

0
g(0,0)i dλ

〉pφ

ϑ

,

Ū∥e(g
(0,0)
e ) =

3
2
e−V̂2

e
ν̂ee

ν̂ee+ ν̂ei〈
B2
0
R
Bφ

∑
σ

σ

ˆ
R+

dV̂e

ˆ B−1

0
g(0,0)e dλ

〉pφ

ϑ

and

U∥ei(g
(0,0)
i ) =

2
π1/2

e−V̂2
e

(
me

mi

)2
ν̂ei

ν̂ee+ ν̂ei〈
R
Bφ

B2
0

∑
σ

σ

ˆ
R+

dV̂iV̂
3
i

ˆ B−1

0
g(0,0)i dλ

〉pφ

ϑ

.

Appendix C. Benchmarking of the (4D) DK-and (3D)
RDK-NTM models for the plasma response to a
magnetic island

In this appendix we compare the 4D DK-NTMmodel with our
new 3D RDK-NTM model in the relevant limit of low colli-
sion frequency. Note that the current DK-NTM version does
not contain iterations on the electrostatic potential. The fully
consistent DK-NTM approach is currently under development
and shall be presented in the future.

In figures C1(a) and (b) we compare the (R)DK-NTM solu-
tions plotted against y, where y=

√
S− Smin with Smin being a

minimum value of S as a function of p̂φ, ξ, λ, V̂ for each σ. S=
Smin therefore corresponds to the O-point of the drift island.
We see that the models are in agreement, even approaching
λ=λc (λc= 0.91 for ε= 0.1). In figures C1(c)–(h) we plot
the DK-NTM solution outside and inside the collisional dis-
sipative layer around the trapped-passing boundary. As we
can see from figures C1(c)–(e), the ξ dependence of g(0)j
in y/S space is indeed weak at the deeply passing end and
becomes significant only when λ enters the collisional dis-
sipation layer (figures C1(f)–(h)), consistent with the S form-
alism developed in section 5 for the RDK-NTM model. In
figures C2–C3 we plot the DK- and RDK-NTM density
moments, (1/2)

∑
σ g

(0),σ
i , against pφ across the O-point and

X-point in ξ space. In λ space two points are chosen: well in
the passing region and in the vicinity of the trapped-passing
boundary, where the collisional layer influences the solution.
Note the oscillations in the vicinity of the X-point produced
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by the DK-NTM model; this is assumed to be numerical,
but will be explored further in future. Since it is the dens-
ity/temperature gradient that is responsible for the perturba-
tion in the bootstrap current, in figure C4 we show the dens-
ity moments, differentiated with respect to pφ and plotted
against pφ to magnify any differences. The largest discrepan-
cies are at the largest ρϑi/w. We note from these comparisons
that the (R)DK-NTM distribution functions agree reasonably
well even around the S island separatrix, where the ∂ 2/∂S2

term from the collision operator competes with the parallel
streaming.

In figures C2–C4 we confirm that the impact of the drift
islands on the density gradient inside the magnetic island
increases with ρϑi as the radial shift of drift islands relative
to the magnetic island becomes larger. At the same time, the
effect of the radial shift seems to become less crucial as λ
approaches the collisional dissipation layer, e.g. the ion dens-
ity moment has a partially flat region across the island at
λ= 0.83 even at a relatively large ρϑi/w= 0.35 or 1. This
might be explained by the fact that the passing solution close to
λ=λc is influenced by the trapped branch via the matching in
the dissipation layer and vice versa: drift islands do not exist
in the trapped region, but the magnetic island is still present
and provides the flat solution in the vicinity of the O-point.
Nevertheless, since the fraction of trapped particles is small,
their contribution to the total density is insufficient to enforce
the conventional flat profile across the magnetic island at large
ρϑiw−1.

In figure C5 we show the flow moments, (1/2)
∑
σ σg

(0),σ
i ,

in ψ space. As mentioned above, since the trapped particle
solution is independent of σ at fixed pφ, their contribution to
the parallel flow is small, as we can see from figure C5(a).
Both the DK- and RDK-NTM solutions demonstrate agree-
ment with the drift island concept described above in the vicin-
ity of the magnetic island and match the equilibrium neoclas-
sical flows far from the island. At small ρϑi, e.g. ρϑi/w=
0.05, the DK-NTM solution has oscillations in the flow as ξ
approaches the X-point as shown in figures C6(c) and C7(b).
This is potentially numerical, noting that the diffusion term in
pφ or S space scales with ρϑi and will become difficult for the
4D DK-NTM model to resolve at small ρϑi/w. This is true
even at a relatively large ν∗i = 10−2, e.g. see figures C2(g)
and C3(g). This also explains why the best matching res-
ults are obtained at ρϑi ≲ w, while achieving smaller ρϑi/w
becomes increasingly challenging for the 4D DK-NTM code
as the transport terms become smaller. A similar discrepancy is
found in collisionality. Indeed, the pitch angle scattering out-
side the dissipative layer is small and is dominated by the free
streaming. A lower ν∗j will decrease the collision operator fur-
ther, making it difficult for the DK-NTM to resolve the colli-
sional terms. In contrast, the RDK-NTM model requires low
collisionality for particles to follow the S streamlines and to
implement matching through the collisional boundary layer.
We find, ν∗i ∼ (10−3,10−4) provides a narrow window where
the validity regions of both solutions overlap.

To investigate the basis for the threshold, in figures C7(a),
(b) and C8(a), (b) we integrate the flowmoments over velocity

space to provide the ion flow for both the DK- and RDK-NTM
models for small and large ρϑi. At ρϑi/w= 0.05 (figures C7(a)
and (b)), both the DK- and RDK-NTM reproduce the res-
ults of the conventional model for large magnetic islands with
a zero flow profile across the island O-point and matching
the neoclassical equilibrium far from the magnetic island. As
discussed above, the flat region within the magnetic island
decreases with increasing ρϑi/w, as can be seen by comparing
Figures 4, C8(a) and (b). At the same time, the peak region
of the parallel flow right outside the separatrix becomes wider
and is compensated by the contribution to the parallel flow that
originated inside the island. As we can see from figures C8(a)
and (b), this balancing contribution is mainly localised within
the island region according to the DK-NTM predictions (blue
area inside the island in figure C8(b)), while in the RDK-
NTM solution it is concentrated around the X-point (blue areas
closer to the X-point in figure C8(a)).

The origin of the negative DK-NTM flow in figure C8(b)
inside the magnetic island is shown in figure C10. In contrast
to the RDK-NTM solution, where σ=±1 drift islands are loc-
ated at the same level with the magnetic island, in accordance
with equation (21), the DK-NTM distribution functions (and
hence drift islands) for σ=±1, along with the radial shift, are
also vertically shifted relative to each other and to themagnetic
island. The vertical shift of the distribution function is denoted
by g0 in figure C10. As we see from figures C10(b)–(d), DK-
NTM predicts that g0 is not constant but is a function of λ at
fixed pφ and/orψ. At fixed pφ and λ, the vertical shift is a func-
tion of ξ as well. Its origin in DK-NTM is to be investigated
further as part of the future work. Note, as the DK-NTM solu-
tions are vertically shifted by the same value, this vertical shift
does not influence the density moments and thus they agree
with the RDK-NTM solutions.

Now let us compare the (R)DK-NTM solution against the
analytic solution found in [18]. The curvature of the distribu-
tion function in the vicinity of the island separatrix is determ-
ined by the diffusion terms that arise from transforming from
ψ to S/pφ in the pitch angle scattering collision operator. These
transport terms are proportional to ∂k/∂Sk

∣∣
λ,ξ

or ∂k/∂pkφ
∣∣
λ,ξ

(k= 1, 2), respectively. In figure C9(c) we plot the leading
order ion distribution function, differentiated with respect to y,
against y, obtained with the full collision operator. For RDK-
NTM this is the collision operator presented in appendix B.
In figure C9(d) we plot the analytic result of [18] valid in the
limit of largew (ρϑi/w= 0.05 is chosen). This is to be denoted
by H96. H96 is derived from a model diffusion of the form
Γψ =−D∂n/∂ψ, whereΓψ is the particle flux in the radial dir-
ection andD is the diffusion coefficient that has been assumed
to be a slowly varying function across the magnetic island O-
point. In figure C9(d) we also show the test RDK-NTM solu-
tion with the model radial diffusion weighted by

√
S+ cosξ

(green markers)12. The latter reproduces well the H96 solu-
tion at large w outside the island. Figures C9(c) and (d) show
that keeping the actual S diffusion is important; otherwise, a

12 This is equivalent to diffusion taken in [18] in the limit of small ρϑi/w.
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significant fraction of the perturbation will be removed right
outside the separatrix. A consequence of this is that our quant-
itative results may be sensitive to turbulent diffusion—a pos-
sibility to explore in the future.

A potential source of discrepancy between the DK- and
RDK-NTMmodels is associated with a narrow boundary layer
around the drift island separatrix. While the DK- and RDK-
NTM g(0)i seem to agree well in the vicinity of the separat-
rix, figure C9(c). shows that there is some difference in their y
derivatives. In the vicinity of the drift island separatrix, there is
a region where S derivatives drive a large diffusion which can
be comparable to parallel streaming, νii/e∂ 2/∂S2 ∼A∂/∂ξ|S.
This would invalidate the perturbative treatment of collisions
in the RDK-NTM solver. This region is then to be treated in
a way similar to the dissipative layer solution in λ space dis-
cussed above. This separatrix layer has been addressed to some
extent in [21, 22, 29, 30], but without a complete treatment in
toroidal geometry. Future extensions of the RDK-NTMmodel
will address this, but it is not expected to influence the cal-
culation of the bootstrap current and thus the result for the
RDK-NTM magnetic island threshold presented in section 6.
However, the difference shown in figure C9(c) might be cru-
cial in calculating the polarisation current, which at this stage
remains part of our future work (noting that here we consider
stationary islands in the plasma E×B rest frame, for which
the polarisation current is not expected to be important).
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