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Abstract
Differential rotation is induced in tokamak plasmas when an underlying symmetry of the
governing gyrokinetic-Maxwell system of equations is broken. One such symmetry-breaking
mechanism is considered here: the turbulent acceleration of particles along the mean magnetic
field. This effect, often referred to as the ‘parallel nonlinearity’, has been implemented in the δf
gyrokinetic code stella and used to study the dependence of turbulent momentum transport
on the plasma size and on the strength of the turbulence drive. For JET-like parameters with a
wide range of driving temperature gradients, the momentum transport induced by the inclusion
of turbulent acceleration is similar to or smaller than the ratio of the ion Larmor radius to the
plasma minor radius. This low level of momentum transport is explained by demonstrating an
additional symmetry that prohibits momentum transport when the turbulence is driven far above
marginal stability.
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1. Introduction

Observational evidence obtained from a wide range of toka-
maks indicates that axisymmetric plasmas exhibit differential
toroidal rotation even in the absence of an externally applied
torque (see [1–11]). This ‘intrinsic rotation’ is determined by
momentum redistribution within the plasma, which is typi-
cally dominated by turbulent transport. Understanding tur-
bulent momentum transport is thus critical for predicting
intrinsic rotation.

Calculation of the intrinsic turbulent momentum trans-
port in tokamak plasmas is particularly challenging. This is
the result of a symmetry of the gyrokinetic-Maxwell system
of equations that statistically prohibits momentum transport
to lowest order in the gyrokinetic expansion parameter

ai*
r r , with ir the ion Larmor radius and a the plasma
minor radius [12–15]. The symmetry is broken by various
physics effects that are formally small in

*
r and thus

neglected in standard δf gyrokinetic simulations. A compre-
hensive theory including all of these symmetry-breaking
mechanisms is given in [15–19]. There have also been a
number of studies dedicated to individual mechanisms,

including the effect of diamagnetic flows [20–24], up–down
asymmetry of flux surfaces [25–31], slow poloidal variation
of fluctuations [32], and ‘global’ effects [33–36], which
include radial profile variation mingled with the other effects
mentioned. Here we consider the effect of turbulent particle
acceleration along the mean magnetic field, which has not
been studied before in the context of intrinsic momentum
transport3.

With the exception of up–down asymmetry of flux sur-
faces, all of the symmetry-breaking mechanisms drive
momentum transport proportional to

*
r . In the absence of

additional scaling factors to increase the size of the momen-
tum transport, the intrinsic rotation itself is thus a factor of

*
r

smaller than the sonic rotation—making it dynamically
unimportant. However, as shown in [15], the intrinsic
momentum transport arising from the various symmetry-
breaking mechanisms is theoretically expected to scale with
additional factors such as the driving gradients and the ratio
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3 The effect of turbulent acceleration on turbulent fluctuations has previously
been considered [37, 38] and ultimately was shown to be small in

*
r [39], as

expected from the gyrokinetic orderings introduced in section 2.
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of the total to poloidal magnetic field strength, B/Bp.
In particular, neoclassical flow effects and finite-orbit-
width effects drive turbulent momentum transport of size

k B Bi pint gB *
r rP P ~ ^( )( ) , with Πint the radial component

of the toroidal angular momentum flux due to symmetry-
breaking, k⊥ the characteristic wavenumber of the turbulence
in the plane perpendicular to the mean magnetic field,

pRgB
2

*
rP  , p the total plasma pressure, and R the plasma

major radius. The remaining effects—slow poloidal variation
of turbulence, radial profile variation, and turbulent accel-
eration—drive turbulent momentum transport of size

k iint gB
2
*

r rP P ~ ^
-( ) . When turbulent eddies are suffi-

ciently large, i.e. k B Bi pr ~^ , all symmetry-breaking
mechanisms are the same size. In principle, this may make it
possible to drive intrinsic rotation at levels that, while still
sub-sonic, can stabilize MHD modes and potentially suppress
turbulence.

In this paper, we use the local, δf gyrokinetic code
stella [40] to simulate electrostatic plasma turbulence,
including the effect of turbulent particle acceleration (often
referred to as the parallel nonlinearity). Both

*
r and the

driving temperature gradients are varied in order to determine
the scalings of the intrinsic momentum flux and to thus
determine the significance of turbulent acceleration in driving
intrinsic rotation. Our results are compared with the theor-
etical scalings provided in [15], and discrepancies are
explained via an additional approximate symmetry satisfied
by the fluctuations far above marginal stability.

The paper is organised as follows. In section 2 we
introduce the gyrokinetic-Poisson system of equations and the
associated symmetry that prohibits momentum transport. We
then discuss turbulent acceleration and show how it breaks the
symmetry of the equations in section 3. We provide simple
scalings for the intrinsic momentum flux due to this sym-
metry-breaking in section 4 before arguing for the existence
of an additional, approximate symmetry satisfied by the sys-
tem in section 5. Numerical results are presented in section 6,
and a summary with discussion of implications is given in
section 7.

2. Symmetry of the gyrokinetic-Poisson system

Low-frequency fluctuations in tokamak plasmas are described
by the gyrokinetic-Maxwell system of equations [41–46].
They are obtained by averaging over particle gyration about
the mean magnetic field, with the assumption that fluctuations
evolve on a much longer time scale than the gyration period.
If one further assumes a space-time scale separation between
the fluctuations and the mean plasma profiles, then one
obtains the local, δf gyrokinetic model. Explicitly, we restrict
our attention to electrostatic fluctuations and impose the
ordering

f

f L

k

k
k

e

T
1, 1s

s s

s
s

s


d w r
r

j
~

W
~ ~ ~ ~ ~

^



ˆ

( )

where ò is the fundamental gyrokinetic expansion parameter,
fs=Fs+δfs is the particle distribution function for species s,

Fs and δfs are its mean and fluctuating components, ĵ is the
electrostatic potential, ω is a characteristic fluctuation fre-
quency, Ωs=ZseB/msc is the Larmor frequency, Zs is par-
ticle charge number, ms is particle mass, c is the speed of
light, e is the proton charge, B is the magnetic field strength,

vs s sth,r = W is the thermal Larmor radius, v T m2s s sth, = ,
Ts is temperature, L is a characteristic length associated with
mean plasma profiles, and kP and k⊥ are characteristic fluc-
tuation wavenumbers along and across the mean magn-
etic field.

Gyro-averaging the Fokker–Planck equation, applying
the gyrokinetic ordering(1), and expanding f=f0+f1+
f2+..., with f fO =a

a( ) , yields a gyrokinetic equation
describing the evolution of ĝ , the distribution of particle
guiding centres. We choose to work in uR, , ,m J( ) coordi-
nates, with R the particle guiding centre position,

mv B22m = ^ the lowest order particle magnetic moment, u
the particle velocity along the magnetic field, v̂ the particle
speed across the magnetic field, respectively, and ϑ the par-
ticle gyrophase. In these coordinates the gyrokinetic equation
valid to lowest order in ò is

g
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where . Rá ñ denotes a gyro-average at fixed guiding centre
position R, 1ĵ is the electrostatic potential generated by g1̂, t is

time, b̂ is the unit vector along the mean magnetic field, F s0 is
taken to be a Maxwellian distribution in particle velocity,
u m Bbs s0 m= - ˙ ( ) ˆ · is the lowest order contribution to the
parallel acceleration, E∣ is a gradient taken at fixed particle
kinetic energy E mu B22 m= + , c Bv bE1 1j= ´ ̂( ) ˆ ˆ is
the E× B drift velocity, .,.{ } is a Poisson bracket,

B uv bMs s
2km= W ´  +( ˆ ) ( ), b bk = ˆ · ˆ , and the opera-

tor Ĉ accounts for the effect of collisions on g1̂. The system is
closed by coupling to Poisson’s equation, which reduces to
quasineutrality when the Debye length is much smaller than
the electron Larmor radius:

Z e v g
Z e

T
Fd 0. 3

s
s s

s

s
sR

3
1 1 1 0òå j j+ á ñ - =

⎛
⎝⎜

⎞
⎠⎟ˆ ( ˆ ˆ ) ( )

It will be convenient for much of the paper to work in
Fourier space, so we define the Fourier components of ĝ via
g gk k [ ˆ], with k denoting the two-dimensional, discrete

Fourier transform in the plane perpendicular to b̂ and k
denoting the wave vector in this plane. We use the coordinate
system (α, ψ, θ) to represent physical space, with ψ a flux
surface label, α a field line label, and θ a poloidal angle
measuring distance along a given magnetic field line.
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Applying k to(2) and(3) gives
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and

Z e vJ a g
Z en

T
bd 1 0,

5
s

s k s s
s s

s
k sk k

3
0 , 1 0 , 1,òå j+ G - =

⎛
⎝⎜

⎞
⎠⎟( ) ( ( ) )

( )

where ns is the plasma density, J0 is a Bessel function of the
first kind, a kvk s s, = W^ , b b I bexp0 0G = -( ) ( ) ( ), I0 is a
modified Bessel function of the first kind, b k 2k s s,

2 2r= ,

and C g C gs sk k k1 , 1[ ] [ ˆ [ ˆ ]].
If the confining magnetic geometry is up–down sym-

metric, the gyrokinetic-Poisson system(4) and(5) pos-
sesses a symmetry that inhibits momentum transport: If
g k k u t, , , , ,s1 q my a( ) is a solution with associated potential
j1(kψ, kα, θ, t), then g k k u t, , , , ,s1 q my a

«( )= g s1-
k k u t, , , , ,q m- - -y a( ) is also a solution with associated

potential k k t, , ,1j qy a
«( ) = 1j- k k t, , ,q- -y a( ) [12–15].

For turbulence in a statistical steady state that is indepen-
dent of initial conditions, g s1 and g s1

« occur with equal fre-
quency. Upon statistical average, this leads to a vanishing
lowest-order, radial transport of toroidal angular momentum

v mR f v vd E1
1 3 2òy d z yP = á  ñ á   ñy y

-∣ ∣ ( · )( · ) , where ζ is

toroidal angle, A Ad d d d
1

 ò òz q z qá ñy
-

 ( ) denotes an

average over the flux surface, and B q= · is the
Jacobian of the transform to (ζ, ψ, θ) coordinates. The
statistical average could be a time average over many
nonlinear decorrelation times in a statistical steady state or
an ensemble average over many turbulence realisations. We
use the former definition in the simulation results that fol-
low. The fact that Π1 vanishes can be deduced by exam-
ining the contribution to Π1 from wavevector k, given by
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B
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with I RBy = z( ) , R the plasma major radius, Bζ the toroidal
component of the magnetic field, b b I bexp1 1G = -( ) ( ) ( ), and
* denoting complex conjugation. Applying the symmetry

discussed above, we see that the lowest order contribution
to the radial flux of toroidal angular momentum,

k k1 1,P = å P , is zero, with the overline denoting a statis-
tical average.

3. Symmetry-breaking induced by turbulent
acceleration

The symmetry of the lowest order gyrokinetic equation (4) is
broken when one takes into account various physics effects
that are formally small in the gyrokinetic expansion parameter
ò [15, 16]. Here we focus on one such symmetry-breaking
mechanism, the turbulent parallel acceleration of particles.
Retaining higher order terms, the force parallel to the mean
magnetic field is given by

m u
u

B Z e
T

a
b b ,

7

s s
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s s
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W
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with a the minor radius of the plasma volume and as s*
r r= .

Defining u u u v as s s s s1 0
2

th,
2

*
 r= - +˙ ˙ ˙ ( ), we have

m u Z e
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B Z eb b .

8

s s s
s
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We see that, in contrast to the lowest order parallel accel-
eration u0˙ , the acceleration u1˙ is turbulent in nature; i.e. it
depends on the fluctuating electrostatic potential 1ĵ .
The second term in(8) is the only one independent of
turbulence amplitude, and it can be manipulated into
the form u B u I Bb bs skm b mW ´  = ¢ W ( ) ˆ · ( ) ˆ · , with

B4 2b p¢ ¶ ( ) ptot y¶ and ptot the total plasma pressure.
As the plasma pressure in tokamaks is small compared to
the magnetic pressure, b¢∣ ∣ is typically small. The parallel
acceleration given by(8) is then dominated by the turbulent
contributions.

The breaking of symmetry induced by inclusion of u1˙ can
be seen by comparing how u0˙ and u1˙ behave under the
transformation (q q - , u u - , k k -y y). We see that
u u k, ,0 q y˙ ( ) = u u k, ,0 q- - - - y˙ ( ), while u u k, ,1 q y˙ ( ) =
u u k, ,1 q- - - y˙ ( ). This difference in parity Mars the sym-
metry described in section 2 and leads to finite steady-state
momentum transport. Replacing g s k1 , with gs k, and u s0˙ with
us˙ in(4) and(5), and defining g g gs s sk k k2 , , 1 ,- , the gyro-
kinetic-Poisson system becomes
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For g gs sk k2 , 1 , , the product of g s k2 , and k2,j can be
neglected when calculating the radial flux of toroidal angular
momentum. The resulting expression for the lowest order
(non-vanishing) momentum flux is k k2 2,P = å P , with
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where Re .[ ] denotes the real part.

4. Momentum flux scalings

We are interested in determining how the amplitude of the
momentum flux scales with quantities such as device size, eddy
size, and driving gradients. The expected amplitude of the
momentum flux given by(11) depends on the fluctuation
amplitudes and wavenumbers, as well as the phases between
different fluctuations. To obtain the aforementioned scalings for
the momentum flux, we must thus first deduce the scalings for
the fluctuations. To do this we make a number of assumptions
along the lines of [15, 47], where similar scalings for turbulent
heat and momentum fluxes are obtained. In particular, we
assume: that phase differences between gk and kj lead to no
more than order unity variations in the flux; that the fluctuations
are isotropic in the plane perpendicular to the mean magnetic
field so that k k k ;ia y r~ ~a y ^ that at the outer scale the
nonlinear transfer rate k

1t- is comparable to the energy injection
rate, which we estimate to be of order k v Li Tthr^ , with LT the
ion temperature gradient scale length; and that the plasma is in a
state of critical balance [48] so that the time scale associated with
parallel propagation k vth

1-
( ) is comparable to the nonlinear

turnover time kt at all spatial scales.
Assuming e Tk1,j ∼g Fs sk1 , 0 and k

1t- ∼ vE k( · )
∼ k i

2r^( ) v e Ti kth 1,r j( )( ), we obtain
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where we have taken a∼Ln∼LT, with Ln the density gra-
dient scale length. Balancing the first and last terms gives

k L kT ir~ ^ , and balancing the last two terms gives
e T k LTk1,

1j ~ ^
-( ) . If kP is set by the system size, then these

scalings predict that the characteristic k⊥ of the turbulence
decreases and that the fluctuation amplitudes rapidly increase
with increasing temperature gradient. The same trends are
obtained if instead the minimum k⊥ is set by linear stability
thresholds, which would make the minimum k⊥ decrease with
increasing temperature gradient. Gyrokinetic simulations of
plasma turbulence far from marginal stability have found
results consistent with these predictions [47].

Now that we have a predicted scaling for k1,j —and thus
g s k1 , —we proceed to obtain the scaling for g s k2 , . We argued
above that the time scale associated with the fluctuations is
k v Li Tthr^ ( ). Using this time scale and balancing g ts k2 ,¶ ¶
with the source terms containing g s k1 , and k1,j in(9), we have
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from which we find g k L Fs T sk2 ,
2

0~ ^
-( ) . Substituting the

scalings for g s k1 , , g s k2 , , k1,j , and k2,j into(11) gives
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where the lowest-order contribution to the ion radial energy
transport is Q Qi ik k1 1 ,= å , with
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Our use of the ion energy flux to normalize k2,P in(14) is
motivated by the fact that 0k1,P = .

The scaling relation(14) implies that the intrinsic
momentum flux arising from the turbulent parallel accelera-
tion is always small in the gyrokinetic expansion parameter

Li r~ and is minimum near marginal stability where both
k⊥ and LT are relatively large. However, as we discuss in
section 5, an additional symmetry of the gyrokinetic-Poisson
system may be approximately satisfied when both k⊥ and LT
become sufficiently small. If so, the momentum transport
induced by turbulent acceleration could be much smaller than
the estimate given by(14).

5. Additional symmetry for reduced system

In a system with no magnetic shear and no magnetic drift
in the radial direction, an additional symmetry of the
gyrokinetic-Poisson system of equations exists. Namely,
if g k k u t, , , , ,s1 q my a( ) is a solution with associated potential

k k t, , ,1j qy a( ), then g k k u t, , , , ,s1 q my a
«( ) = g s1 k k, ,y a(

u t, , ,q m- - ) is also a solution with associated potential
k k t, , ,1j qy a

«( ) = 1j k k t, , ,q-y a( ) [15]. This differs from
the symmetry of the full gyrokinetic-Poisson system in that
there is no need to change the sign of the radial wavenumber
ky and of g s1̂ and 1ĵ .
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While the parallel acceleration u1˙ breaks the full sym-
metry discussed in section 2, it does not break the symmetry
of a system with neither magnetic shear nor a radial magnetic
drift—as long as the second term in(8) can be neglected. As
discussed in section 3, this is a good approximation when b¢
is small or the turbulence amplitude is large. Because
of the additional symmetry of the reduced system, j1

does not change sign when q q - , and so u u,1 q =«˙ ( )
u u,1 q- - -˙ ( ). This sign reversal under the transformation

u u, ,q q - -( ) ( ) is identical to the behavior of the lowest
order acceleration u0˙ and thus does not break the symmetry of
the reduced gyrokinetic-Poisson system. Consequently, the
turbulent acceleration does not contribute to momentum
transport.

Although the systems in which we are interested in
general have both magnetic shear and a radial magnetic
drift, it is still possible for this additional symmetry to be
approximately satisfied. For systems far from marginal
stability with R L 1T  , the radial magnetic drift often has
only a small effect on linear growth rates and nonlinear
physics; an illustrative example is provided in section 6 (see
figure 1). A possible reason for this is the fact that the time
scale associated with the radial magnetic drift is small
compared to that of the background gradient drive (and thus
the streaming and nonlinear turnover times via the critical
balance argument of section 4) by a factor of R/LT. When
the radial magnetic drift is unimportant, the magnetic shear
appears in the gyrokinetic-Poisson system only through the
perpendicular wavenumber as an argument to the Bessel
function. For turbulence peaked at long wavelengths—as
we argue in section 4 is the case far from marginal stability
—the Bessel function is approximately independent
of k⊥. In this limit the magnetic shear plays little role as
well. It is thus possible that the additional symmetry
described here is approximately satisfied as turbulence
is driven beyond marginal stability. Consequently, it is
expected that the momentum transport driven by parallel
acceleration will be small for turbulence far from marginal
stability.

6. Simulation equations and results

To test the predictions for the size of the momentum flux
arising from the inclusion of turbulent acceleration, we have
implemented the u s1˙ terms given by(8) in the local, δf
gyrokinetic code stella [40]. For the sake of simulation
efficiency, we do not separately evolve g s k1 , and g ;s k2 , instead,
we simulate a single equation for g g gs s sk k k, 1 , 2 ,= + ,
obtained by summing the two lowest order equations
(4) and(9):
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where the collision operator Ck used in stella is a
gyrokinetic form [49] of the Dougherty collision operator
[50], a Fokker–Planck operator that satisfies Boltzmann’s
H-Theorem and conserves particle number, momentum and
energy. The associated quasineutrality constraint is identical
to(5) with the substitution g gs sk k1 , , . Note that we have
implicitly included a number of terms at even higher order
in(16) by including products of k2,j and g s k2 , in the non-
linearities. These should not affect our results, provided ò is
sufficiently small.

For our simulations we use a Miller local specification of
the magnetic geometry [51], in which the cylindrical coor-
dinates R and Z are expressed as R r, q( ) = R r r0 +( )

rcos sin arcsinq q d+( ( )) and Z r, q( ) = r r sink q( ) ( ). Here κ
and δ measure elongation and triangularity of the target flux
surface, and r and R0 are averages of the minimum and
maximum values of the minor and major radii of the target
flux surface at the height of the magnetic axis. The fixed
parameter values used in our stella simulations, chosen to

Figure 1. (Left): Normalized linear growth rate γ versus normalized bi-normal wavenumber ky ir for kx=0 and different values of the
equilibrium temperature gradient scale length LT. (Right): Normalized linear growth rate γ versus ballooning angle k k sx y0q = ˆ for
kyρi=0.6, with and without the radial component of the magnetic drift artificially set to zero.
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be similar to those of a typical JET shot at mid-radius, are
given in table 1. In order to test our scaling predictions for the
intrinsic momentum flux(14), we conducted scans in both

*
r

and a/LT. These scans are intended to determine the intrinsic
momentum flux as a function of plasma volume and distance
from marginal stability, respectively.

All simulations discussed here treated electrons and a
single deuterium ion species kinetically and used 48 grid
points in u, 12 grid points in μ, and 32 grid points per
2πsegment in θ. The results of linear simulations with

0
*
r = and a/LT varying from 1 to 6.5 are given in figure 1.
These simulations used an extended ballooning domain
spanning [−3π, 3π] in θ. We see from the growth rate
spectrum that a/LT=1 is very near the linear critical gra-
dient, with only a narrow range of weakly-unstable bi-normal
mode numbers (ky). In contrast, a/LT=6.5 is far above
marginal stability, with relatively large growth rates across the
entire spectrum and no finite cutoff at long wavelengths. In
the former case, one anticipates that the largest turbulent
eddies are determined by the minimum k⊥ for which there is a
non-zero growth rate; in the latter case, the largest turbulent
eddies are constrained by the connection length along the
magnetic field via the critical balance argument summarized
in section 4. This range of a/LT should thus give a good
indication of how the intrinsic momentum flux varies with
distance from marginality. The right-hand plot in figure 1,
which shows the variation in growth rate as a function of the
ballooning angle k skx y0q  ( ˆ ), demonstrates the relative
unimportance of the radial component of the magnetic drift
for calculating the linear growth rate when the system has
large R/LT and is far from marginal stability.

Time-averaged fluxes from nonlinear simulations run
with 0.01

*
r = and different a/LT values are given in

figure 2. After de-aliasing, the simulations included 128
Fourier modes in the radial wavenumber k k rB qx ry
and 22 Fourier modes in the bi-normal wavenumber
k k B rd dy r ya , with ψ the poloidal flux. The spacings in
ky ir and kx ir were 0.05 and approximately 0.055 for all a/LT

values except a/LT=6.5, for which the spacings were
approximately 0.033 and 0.037, respectively. From the left
panel of figure 2, we see that the ratio of ion momentum flux
Π to ion heat flux Qi is approximately

*
r near marginal sta-

bility and decreases as the system gets further from marginal
stability.

The size of QiP near marginal stability is consistent
with the scaling prediction given in(14), but its decrease with
increasing a/LT is not. This is not entirely surprising given
the discussion in section 5 of an additional symmetry prohi-
biting momentum transport when the turbulence is con-
centrated at long wavelengths and when the radial magnetic
drifts are unimportant. Indeed, this is borne out by con-
sidering the behavior of the gyro-Bohm-normalized ion heat
flux. From the right panel of figure 2, we see that Qi increases
rapidly with distance from marginality, as expected. Artifi-
cially removing the radial component of the magnetic drift
results in more than an order of magnitude change in the heat
flux near marginal stability, but only a few tens of percent
change far above marginal stability. When coupled with the
fact that the turbulence peaks at wavelengths comparable to
the poloidal Larmor radius far from marginality [47], this
indicates that the additional symmetry discussed in section 5
should be approximately satisfied. From the left panel of
figure 2, we see that the ratio QiP goes to zero (within error
bars) when the radial magnetic drift is removed—consistent
with the presence of the additional symmetry of section 5.
This explains the small values of QiP for large a/LT.

We consider the scaling of QiP with
*
r at fixed

a/LT=3.2 in figure 3. The data are consistent with a linear
scaling in

*
r , as expected for small

*
r given the perturbative

framework in which we are working.

7. Summary and discussion

The main results of the paper are encapsulated in figures 2
and 3. They indicate, for the parameters chosen here, that the
radial transport of toroidal angular momentum driven by
turbulent parallel acceleration is similar to or smaller than

*
r ,

regardless of the strength of the turbulence drive. We argued
in section 4 that this should be expected when turbulent
eddies have a typical size of the ion gyroradius, as is the case
near marginal stability. Further from marginal stability, as
turbulent eddies grow larger, the same scaling arguments
predict that the ratio of momentum flux to heat flux should
increase. This discrepancy with simulation results is antici-
pated in section 5 by noting that an additional, approximate
symmetry of the gyrokinetic-Poisson system is satisfied when
b¢ is small, radial magnetic drifts are unimportant and tur-
bulence is concentrated at long wavelengths. These condi-
tions are often satisfied far above marginal stability, as borne
out by the data presented in section 6.

To the extent that our results are applicable to a broader
range of plasma parameters, our study implies that turbulent
acceleration is unlikely to contribute significantly to intrinsic
rotation. This is because there are other symmetry-breaking
mechanisms—namely, neoclassical flows [20–24] and finite

Table 1. Equilibrium plasma parameters for stella simulations.

Parameter Description Value

r r a=˜ Normalized minor radius 0.5
R R a0=˜ Normalized major radius 3.2
R rd d0 Local Shafranov shift −0.2
q Safety factor 1.7
s d q d rln ln=ˆ Magnetic shear 0.7
κ Elongation 1.35

rd dk ˜ Elongation derivative 0.1
δ Triangularity 0.1

rd dd ˜ Triangularity derivative 0.2
p B d p r4 ln drtot

2
totp( )( ˜) Normalized b¢ −0.035

a vii ith,n ( ) Ion–ion collision frequency 0.005
a/Ln Inverse density gradient

scale length
0.7

Br Reference magnetic field
strength

RBζ/R0
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orbit width effects [15–17]—that have been found analytically
and numerically to drive QiP that scales as B Bp *

r( ) . As
B Bp  in most tokamaks, the associated momentum flux is
likely an order of magnitude larger than the values obtained
here. There are, however, a couple of caveats to consider. The
scaling theory from section 4 was derived (and verified) under
the assumption that turbulence is far from marginal. As such, it
is not clear from theoretical considerations alone if one should
expect additional factors of (B/Bp) appearing in the

*
r scaling

of the momentum flux near marginal stability. Of course, this
study also only considered a single point in the parameter space;
a broader range of parameters needs to be considered before a
definitive statement about the importance of turbulent accel-
eration in generating intrinsic rotation can be made.

Finally, it is perhaps worth noting that the arguments
used here to obtain the momentum flux scaling(14) lead to an
identical result for the momentum flux driven by the slow
poloidal variation of turbulence and by radial profile variation
[15], both so-called ‘global’ effects. The discussion from
section 5 also applies to these global effects, so that they too
do not lead to momentum transport for a reduced system with
no magnetic shear or radial magnetic drifts. As such, the
results reported here for turbulent acceleration may provide

some insight as to the size and scaling of the momentum flux
driven by global effects.

Acknowledgments

The authors acknowledge the use of ARCHER through the
Plasma HEC Consortium EPSRC grant number EP/
L000237/1 under project e281-gs2 and the use of the
EUROfusion High Performance Computer (Marconi-Fusion)
under project MULTEI. This work was supported in part by
the Engineering and Physical Sciences Research Council
(EPSRC, Grant Number EP/R034737/1).

ORCID iDs

M Barnes https://orcid.org/0000-0002-0177-1689

References

[1] Rice J E, Bonoli P T, Goetz J A, Greenwald M J,
Hutchinson I H, Marmar E S, Porkolab M, Wolfe S M,
Wukitch S J and Chang C S 1999 Central impurity toroidal
rotation in ICRF heated Alcator C-Mod plasmas Nucl.
Fusion 39 1175

[2] Rice J E, Hubbard A E, Hughes J W, Greenwald M J,
LaBombard B, Irby J H, Lin Y, Marmar E S,
Mossessian D and Wolfe S M 2005 The dependence of core
rotation on magnetic configuration and the relation to the
H-mode power threshold in Alcator C-Mod plasmas with no
momentum input Nucl. Fusion 45 251

[3] Bortolon A, Duval B P, Pochelon A and Scarabosio A 2006
Observation of spontaneous toroidal rotation inversion in
ohmically heated tokamak plasmas Phys. Rev. Lett. 97
235003

[4] Scarabosio A, Bortolon A, Duval B P, Karpushov A and
Pochelon A 2006 Toroidal plasma rotation in the TCV
tokamak Plasma Phys. Control. Fusion 48 663

[5] deGrassie J S, Burrell K H, Groebner R J and Solomon W M
2007 Intrinsic rotation in DIII-D Phys. Plasmas 14 056115

Figure 2. (Left): Ratio of ion momentum flux Π to ion heat flux Qi as a function of a/LT. (Right): Normalized ion heat flux as a function of
a/LT, with Q n T v ai i i igB th,

2r ( ) . Blue open circles indicate cases where the radial component of the magnetic drift was artificially set to
zero, and the red square is a case where both the radial and bi-normal components of the magnetic drift were artificially set to zero. Error bars
indicate statistical errors arising due to the finite interval used for the time average.

Figure 3. Ratio of ion momentum flux Π to ion heat flux Qi as a
function of ai*

r r= . Error bars indicate statistical errors arising
due to the finite interval used for the time average.

7

Plasma Phys. Control. Fusion 61 (2019) 025003 M Barnes and F I Parra

https://orcid.org/0000-0002-0177-1689
https://orcid.org/0000-0002-0177-1689
https://orcid.org/0000-0002-0177-1689
https://orcid.org/0000-0002-0177-1689
https://doi.org/10.1088/0029-5515/39/9/310
https://doi.org/10.1088/0029-5515/45/4/005
https://doi.org/10.1103/PhysRevLett.97.235003
https://doi.org/10.1103/PhysRevLett.97.235003
https://doi.org/10.1088/0741-3335/48/5/012
https://doi.org/10.1063/1.2539055


[6] Duval B P, Bortolon A, Karpushov A, Pitts R A, Pochelon A,
Scarabosio A and the TCV Team 2007 Bulk plasma rotation
in the TCV tokamak in the absence of external momentum
input Plasma Phys. Control. Fusion 49 B195–209

[7] Rice J E et al 2007 Inter-machine comparison of intrinsic
toroidal rotation in tokamaks Nucl. Fusion 47 1618–24

[8] Eriksson L-G, Hellsten T, Nave M F F, Brzozowski J,
Holmström K, Johnson T, Ongena J, Zastrow K-D and JET-
EFDA Contributors 2009 Toroidal rotation in RF heated
JET plasmas Plasma Phys. Control. Fusion 51 044008

[9] Ince-Cushman A et al 2009 Observation of self-generated
flows in tokamak plasmas with lower-hybrid-driven current
Phys. Rev. Lett. 102 035002

[10] Solomon W M et al 2010 Mechanisms for generating toroidal
rotation in tokamaks without external momentum input
Phys. Plasmas 17 056108

[11] Parra F I, Nave M F F, Schekochihin A A, Giroud C,
de Grassie J S, Severo J H F, de Vries P and Zastrow K-D
2012 Scaling of spontaneous rotation with temperature and
plasma current in tokamaks Phys. Rev. Lett. 108 095001

[12] Peeters A G and Angioni C 2005 Linear gyrokinetic
calculations of toroidal momentum transport in a tokamak
due to the ion temperature gradient mode Phys. Plasmas 12
072515

[13] Parra F I, Barnes M and Peeters A G 2011 Up–down symmetry
of the turbulent transport of toroidal angular momentum in
tokamaks Phys. Plasmas 18 062501

[14] Sugama H, Watanabe T H, Nunami M and Nishimura S 2011
Momentum balance and radial electric fields in
axisymmetric and nonaxisymmetric toroidal plasmas Plasma
Phys. Control. Fusion 53 024004

[15] Parra F I and Barnes M 2015 Intrinsic rotation in tokamaks:
theory Plasma Phys. Control. Fusion 57 045002

[16] Parra F I, Catto P J and Barnes M 2011 Sources of intrinsic
rotation in the low flow ordering Nucl. Fusion 51 113001

[17] Parra F I, Barnes M, Calvo I and Catto P J 2012 Intrinsic
rotation with gyrokinetic models Phys. Plasmas 19 056116

[18] Calvo I and Parra F I 2012 Long-wavelength limit of
gyrokinetics in a turbulent tokamak and its intrinsic
ambipolarity Plasma Phys. Control. Fusion 54 115007

[19] Calvo I and Parra F I 2015 Radial transport of toroidal angular
momentum in tokamaks Plasma Phys. Control. Fusion 57
075006

[20] Barnes M, Parra F I, Lee J P, Belli E A, Nave M F F and
White A E 2013 Intrinsic rotation driven by non-Maxwellian
equilibria in tokamak plasmas Phys. Rev. Lett. 111
055005

[21] Lee J P, Barnes M, Parra F I, Belli E A and Candy J 2014 The
effect of diamagnetic flows on turbulent driven ion toroidal
rotation Phys. Plasmas 21 056106

[22] Lee J P, Parra F I and Barnes M 2014 Turbulent momentum
pinch of diamagnetic flows in a tokamak Nucl. Fusion 54
022002

[23] Lee J P, Barnes M, Parra F I, Belli E A and Candy J 2015
Turbulent momentum transport due to neoclassical flows
Plasma Phys. Control. Fusion 57 125006

[24] Hornsby W A, Angioni C, Fable E, Manas P, McDermott R,
Peeters A G, Barnes M, Parra F I and The ASDEX Upgrade
Team 2017 On the effect of neoclassical flows on intrinsic
momentum in asdex upgrade ohmic l-mode plasmas Nucl.
Fusion 57 046008

[25] Camenen Y et al 2011 Experimental evidence of momentum
transport induced by up–down asymmetric magnetic
equilibrium in toroidal plasmas Nucl. Fusion 51 073039

[26] Ball J, Parra F I, Barnes M, Dorland W, Hammett G W,
Rodrigues P and Loureiro N F 2014 Intrinsic momentum
transport in up–down asymmetric tokamaks Plasma Phys.
Control. Fusion 56 095014

[27] Ball J, Parra F I and Barnes M 2016 Poloidal tilting symmetry
of high order tokamak flux surface shaping in gyrokinetics
Plasma Phys. Control. Fusion 58 045023

[28] Ball J and Parra F I 2016 Scaling of up–down asymmetric
turbulent momentum flux with poloidal shaping mode
number in tokamaks Plasma Phys. Control. Fusion 58
055016

[29] Ball J, Parra F I, Lee J P and Cerfon A J 2016 Effect of the
Sharfanov shift and the gradient of β on intrinsic momentum
transport in up–down asymmetric tokamaks Plasma Phys.
Control. Fusion 58 125015

[30] Ball J and Parra F I 2017 Turbulent momentum transport due to
the beating between different tokamak flux surface shaping
effects Plasma Phys. Control. Fusion 59 024007

[31] Ball J, Parra F I, Landreman M and Barnes M 2017 Optimized
up–down asymmetry to drive fast intrinsic rotation in
tokamaks Nucl. Fusion 58 026003

[32] Sung T, Buchholz R, Casson F J, Fable E, Grosshauser S R,
Hornsby W, Migliano P and Peeters A G 2013 Toroidal
momentum transport in a tokamak caused by symmetry
breaking parallel derivatives Phys. Plasmas 20 042506

[33] Waltz R E, Staebler G M and Solomon W M 2011 Gyrokinetic
simulation of momentum transport with residual stress from
diamagnetic level velocity shears Phys. Plasmas 18 042504

[34] Camenen Y, Idomura Y, Jolliet S and Peeters A G 2011
Consequences of profile shearing on toroidal momentum
transport Nucl. Fusion 51 073039

[35] Grierson B A, Wang W X, Ethier S, Staebler G M,
Battaglia D J, Boedo J A, deGrassieand J S and
Solomon W M 2017 Main-ion intrinsic toroidal rotation
profile driven by residual stress torque from ion temperature
gradient turbulence in the DIII-D tokamak Phys. Rev. Lett.
118 015002

[36] Hornsby W A, Angioni C, Lu Z X, Fable E, Erofeev I,
McDermott R, Medvedeva A, Lebschy A and The ASDEX
Upgrade Team 2018 Global gyrokinetic simulations of
intrinsic rotation in ASDEX Upgrade Ohmic L-mode
plasmas Nucl. Fusion 58 056008

[37] Kniep J C, Leboeuf J-N and Decyk V K 2004 Gyrokinetic
particle-in-cell calculations of ion temperature gradient
driven turbulence with parallel nonlinearity and strong flow
corrections Comput. Phys. Commun. 164 98

[38] Lin Z, Rewoldt G, Ethier S, Hahm T S, Lee W W,
Lewandowski J, Nishimura Y and Wang W X 2005 Particle-
in-cell simulations of electron transport from plasma
turbulence: recent progress in gyrokinetic particle
simulations of turbulent plasmas J. Phys.: Conf. Ser. 16 16

[39] Candy J, Waltz R, Parker S E and Chen Y 2006 Relevance of
the parallel nonlinearity in gyrokinetic simulations of
tokamak plasmas Phys. Plasmas 13 074501

[40] Barnes M, Parra F I and Landreman M 2018 Stella: a mixed
implicit-explicit fd -gyrokinetic code for general magnetic
field configurations J. Comput. Phys. submitted (arxiv:1806.
02162)

[41] Catto P J 1978 Linearized gyro-kinetics Plasma Phys. 20 719
[42] Frieman E A and Chen L 1982 Nonlinear gyrokinetic equations

for low-frequency electromagnetic waves in general plasma
equilibria Phys. Fluids 25 502

[43] Brizard A J and Hahm T S 2007 Foundations of nonlinear
gyrokinetic theory Rev. Mod. Phys. 79 421

[44] Parra F I and Catto P J 2008 Limitations of gyrokinetics on
transport time scales Plasma Phys. Control. Fusion 50
065014

[45] Parra F I and Calvo I 2011 Phase-space lagrangian derivation
of electrostatic gyrokinetics in general geometry Plasma
Phys. Control. Fusion 53 045001

[46] Abel I G, Plunk G G, Wang E, Barnes M, Cowley S C,
Dorland W and Schekochihin A A 2013 Multiscale

8

Plasma Phys. Control. Fusion 61 (2019) 025003 M Barnes and F I Parra

https://doi.org/10.1088/0741-3335/49/12B/S18
https://doi.org/10.1088/0741-3335/49/12B/S18
https://doi.org/10.1088/0741-3335/49/12B/S18
https://doi.org/10.1088/0029-5515/47/11/025
https://doi.org/10.1088/0029-5515/47/11/025
https://doi.org/10.1088/0029-5515/47/11/025
https://doi.org/10.1088/0741-3335/51/4/044008
https://doi.org/10.1103/PhysRevLett.102.035002
https://doi.org/10.1063/1.3328521
https://doi.org/10.1103/PhysRevLett.108.095001
https://doi.org/10.1063/1.1949608
https://doi.org/10.1063/1.1949608
https://doi.org/10.1063/1.3586332
https://doi.org/10.1088/0741-3335/53/2/024004
https://doi.org/10.1088/0741-3335/57/4/045002
https://doi.org/10.1088/0029-5515/51/11/113001
https://doi.org/10.1063/1.3699186
https://doi.org/10.1088/0741-3335/54/11/115007
https://doi.org/10.1088/0741-3335/57/7/075006
https://doi.org/10.1088/0741-3335/57/7/075006
https://doi.org/10.1103/PhysRevLett.111.055005
https://doi.org/10.1103/PhysRevLett.111.055005
https://doi.org/10.1063/1.4872322
https://doi.org/10.1088/0029-5515/54/2/022002
https://doi.org/10.1088/0029-5515/54/2/022002
https://doi.org/10.1088/0741-3335/57/12/125006
https://doi.org/10.1088/1741-4326/aa5aa1
https://doi.org/10.1088/0029-5515/51/7/073039
https://doi.org/10.1088/0741-3335/56/9/095014
https://doi.org/10.1088/0741-3335/58/4/045023
https://doi.org/10.1088/0741-3335/58/4/045023
https://doi.org/10.1088/0741-3335/58/4/045023
https://doi.org/10.1088/0741-3335/58/4/045023
https://doi.org/10.1088/1361-6587/59/2/024007
https://doi.org/10.1088/1741-4326/aa9a50
https://doi.org/10.1063/1.4799750
https://doi.org/10.1063/1.3579481
https://doi.org/10.1088/0029-5515/51/7/073039
https://doi.org/10.1103/PhysRevLett.118.015002
https://doi.org/10.1088/1741-4326/aab22f
https://doi.org/10.1016/j.cpc.2004.06.014
https://doi.org/10.1088/1742-6596/16/1/002
https://doi.org/10.1063/1.2220536
http://arXiv.org/abs/1806.02162
http://arXiv.org/abs/1806.02162
https://doi.org/10.1088/0032-1028/20/7/011
https://doi.org/10.1063/1.863762
https://doi.org/10.1103/RevModPhys.79.421
https://doi.org/10.1088/0741-3335/50/6/065014
https://doi.org/10.1088/0741-3335/50/6/065014
https://doi.org/10.1088/0741-3335/53/4/045001


gyrokinetics for rotating tokamak plasmas: fluctuations,
transport, and energy flows Rep. Prog. Phys. 76 116201

[47] Barnes M, Parra F I and Schekochihin A A 2011 Critically
balanced ion temperature gradient turbulence in fusion
plasmas Phys. Rev. Lett. 107 115003

[48] Goldreich P and Sridhar S 1995 Toward a theory of interstellar
turbulence: II. Strong alfvenic turbulence Astrophys. J. 438
763–75

[49] Mandell N R, Dorland W and Landreman M 2018 Laguerre–
Hermite pseudo-spectral velocity formulation of
gyrokinetics J. Plasma Phys. 84 905840108

[50] Dougherty J P 1964 Model Fokker–Planck equation for a
plasma and its solution Phys. Fluids 7 1788

[51] Miller R L, Chu M S, Greene J M, Lin-Liu Y R and Waltz R E
1998 Noncircular, finite aspect ratio, local equilibrium
model Phys. Plasmas 5 973

9

Plasma Phys. Control. Fusion 61 (2019) 025003 M Barnes and F I Parra

https://doi.org/10.1088/0034-4885/76/11/116201
https://doi.org/10.1103/PhysRevLett.107.115003
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1086/175121
https://doi.org/10.1017/S0022377818000041
https://doi.org/10.1063/1.2746779
https://doi.org/10.1063/1.872666

	1. Introduction
	2. Symmetry of the gyrokinetic-Poisson system
	3. Symmetry-breaking induced by turbulent acceleration
	4. Momentum flux scalings
	5. Additional symmetry for reduced system
	6. Simulation equations and results
	7. Summary and discussion
	Acknowledgments
	References



