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The saturated state of turbulence driven by the ion-temperature-gradient instability is
investigated using a two-dimensional long-wavelength fluid model that describes the
perturbed electrostatic potential and perturbed ion temperature in a magnetic field with
constant curvature (a Z-pinch) and an equilibrium temperature gradient. Numerical
simulations reveal a well-defined transition between a finite-amplitude saturated state
dominated by strong zonal-flow and zonal temperature perturbations, and a blow-up state
that fails to saturate on a box-independent scale. We argue that this transition is equivalent
to the Dimits transition from a low-transport to a high-transport state seen in gyrokinetic
numerical simulations (Dimits et al., Phys. Plasmas, vol. 7, 2000, 969). A quasi-static
staircase-like structure of the temperature gradient intertwined with zonal flows, which
have patch-wise constant shear, emerges near the Dimits threshold. The turbulent heat flux
in the low-collisionality near-marginal state is dominated by turbulent bursts, triggered by
coherent long-lived structures closely resembling those found in gyrokinetic simulations
with imposed equilibrium flow shear (van Wyk et al., J. Plasma Phys., vol. 82, 2016,
905820609). The breakup of the low-transport Dimits regime is linked to a competition
between the two different sources of poloidal momentum in the system – the Reynolds
stress and the advection of the diamagnetic flow by the E × B flow. By analysing the
linear ion-temperature-gradient modes, we obtain a semi-analytic model for the Dimits
threshold at large collisionality.

Key words: fusion plasma, plasma nonlinear phenomena, plasma instabilities

1. Introduction

Understanding the heat-transport properties of magnetically confined plasmas is crucial
for the design of successful tokamak experiments. Since the characteristic correlation
length of the turbulence is small compared to the size of the tokamak, one normally
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assumes that the local heat transport depends only on local conditions, such as density,
temperature, magnetic field and their gradients (this view has been challenged; see
Dif-Pradalier et al. 2010). Existing research suggests that the dominant contribution to
the heat flux in tokamaks arises from turbulence driven by microinstabilities, the most
prominent of which is the ion-temperature-gradient instability (Waltz 1988; Cowley,
Kulsrud & Sudan 1991; Kotschenreuther et al. 1995a). We use ‘ITG instability’ and
‘ITG turbulence’ as shorthand terms for this instability and the turbulence driven by it,
respectively. As the name suggests, it is controlled by the gradient of ion temperature,
which is a source of free energy for unstable microscale perturbations. It is then natural to
investigate the dependence of the heat flux carried by the perturbations on the temperature
gradient that drives those perturbations. Knowing the relationship between them, one can
invert this relationship and find the heating power needed to support a given temperature
gradient.

Strongly driven ITG turbulence, i.e. ITG turbulence with a temperature gradient far
above the linear-instability threshold, is believed to saturate via a ‘critically balanced’
turbulent cascade (Barnes, Parra & Schekochihin 2011): free energy stored in the
equilibrium gradient is injected into perturbations by the instability and nonlinearly
transferred (cascaded) to smaller scales, where it is thermalised via collisions. This is
governed by the same kind of processes as the Kolmogorov cascade in hydrodynamic
turbulence (Frisch 1995). This strongly turbulent saturated state supports vigorous
turbulent transport of energy, so increasing the temperature gradient in such a system
requires very substantial increases in heating power.

Naïvely, one expects strong turbulence and high levels of transport to set in as soon as the
temperature gradient exceeds the linear-instability threshold. However, there is numerical
evidence for a low-transport regime with low levels of turbulence at temperature gradients
larger than the linear threshold for the ITG instability but smaller than some nonlinear
threshold above which strong turbulence and a high-transport state set in (Dimits et al.
2000). Simulations have shown that the low-transport state below this threshold (to which
we refer as the ‘Dimits state’ and ‘Dimits threshold’, respectively) is dominated by strong
zonal flows (ZFs) – Larmor-scale shear flows in the poloidal direction. These help regulate
turbulence by shearing heat-carrying perturbations and hence reducing their amplitude. In
this paper, we attempt to explain how the Dimits state is maintained and what leads to its
eventual collapse.

Despite being fairly well studied, many aspects of ZF physics, e.g. generation of
ZFs from turbulence, stability of zonal fields, dependence of experimentally important
quantities, like the heat flux, on basic plasma parameters (density, temperature, magnetic
field and their gradients) in zonally dominated plasmas, remain far from being settled.
One of the established paradigms is the primary–secondary–tertiary instability scenario
(Rogers, Dorland & Kotschenreuther 2000; Rogers & Dorland 2005). Let us outline it
here. The primary ITG instability feeds energy into a spectrum of linearly unstable modes
that become nonlinearly unstable to zonal perturbations: this is the ‘secondary instability’.
Saturation is reached when the energy injection into ZFs is balanced by their slow viscous
damping. Increasing the temperature gradient increases the primary drive, hence the
secondary drive, hence the amplitude of ZFs. However, ZFs of large enough amplitude
become nonlinearly unstable to a ‘tertiary instability’, so they break up, transferring
energy back into the ITG modes. The suppression due to zonal shear having been lost,
fully developed turbulence ensues. In this scenario, the Dimits threshold is given by the
threshold of the tertiary instability.

Even though we show that the tertiary instability determines important properties
of the saturated state (e.g. poloidal spectra), we find that the Dimits threshold is not
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directly determined by the tertiary instability. The latter only works to excite turbulent
perturbations that coexist with the ZFs. The way these perturbations interact with the ZFs
via a mechanism akin to a generalised nonlinear secondary instability is what determines
the Dimits threshold. In the low-collisionality regime, the interactions between turbulent
perturbations and ZFs give rise to predator–prey-like oscillations familiar from past studies
of ZF physics (see e.g. Diamond et al. 2005; Ricci, Rogers & Dorland 2006; Kobayashi
& Rogers 2012).

Recent progress has suggested that an entirely different scenario might need to be
developed for turbulence with imposed background flow shear, applicable to tokamak
plasmas made to rotate differentially. The work by van Wyk et al. (2017) has shown that
close to marginality, the effect of the self-generated zonal shear is negligible compared
to the equilibrium flow shear. The heat flux in this near-marginal state is dominated
not by space-filling turbulence, but by localised, long-time-coherent, soliton-like, finite
temperature and density perturbations travelling through the plasma (van Wyk et al.
2016). We call these structures ferdinons, after Ferdinand van Wyk’s name. As the
temperature-gradient drive is increased, the number of ferdinons increases, they begin
overlapping and interacting strongly and the system enters a fully developed turbulent
state. We do not investigate the case of imposed background flow shear in this paper,
but we do find that locally generated zonal flows arrange themselves in regions of nearly
constant shear. Structures closely resembling ferdinons are seen drifting through these
sheared regions. This suggests that the formation of localised structures is a robust feature
of sheared ITG turbulence as they are seen both in our simplified model (described below
and in § 2) and in more realistic three-dimensional gyrokinetic (GK) simulations.

A comprehensive treatment of the problem of transition to, and saturation of, ITG
turbulence requires the GK framework in toroidal tokamak geometry (Frieman & Chen
1982; Sugama et al. 1996; Sugama & Horton 1997, 1998; Abel et al. 2013; Catto 2019).
However, its complexity makes it both analytically and numerically hard to treat. In
this paper, we attempt the more modest task of tackling the problem in a simplified
model for the dynamical evolution of the perturbations of electrostatic potential (or,
equally well, density) and ion temperature in a tokamak plasma. The model is derived
as an exact asymptotic limit of the underlying GK equations in a physically realisable,
if not necessarily most general, regime (see § 2.4). The approximations used are chosen
to ensure that our model has a number of features that we consider essential: (i) a
curvature-driven ITG instability, characteristic of tokamak plasmas; (ii) an appropriate
modified adiabatic electron response, which has been found to be crucial for capturing
essential ZF properties (e.g. the correct ITG secondary instability; see Hammett et al. 1993
and Rogers et al. 2000); and (iii) it is a two-field model linking the perturbations of the
electrostatic potential and the ion temperature, rather than a one-field drift-wave model of
the Hasegawa & Mima (1978) variety. A two-field model allows us to capture the important
ITG linear instability, while keeping the equations simple enough to allow for an analytic
treatment.

As already mentioned, fully developed ITG turbulence is critically balanced and,
therefore, three-dimensional, so we cannot hope to capture that in a two-dimensional
model. Beyond the Dimits state, we find that our model fails to reach a saturated state –
perturbations grow exponentially and the box-sized perturbations eventually dominate the
spectrum, regardless of the size of the integration domain. As we explain in § 4.5, both the
critical-balance argument and the constraints of the additional conserved quantities in two
dimensions provide heuristic reasoning why developed homogeneous turbulence might
not be able to saturate in two dimensions. If the Dimits transition is indeed a transition
between an inhomogeneous, ZF-dominated state, where saturation is governed by the
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(fundamentally two-dimensional) ZFs, and a state of homogeneous, critically balanced
turbulence, it appears natural that any two-dimensional model that we use to describe the
Dimits regime will be unable to capture the strongly turbulent state. However, the fact
that our model is able to reach a well-defined saturated state in the Dimits regime lends it
some credibility, whereas the fact that it (predictably) fails to saturate beyond the Dimits
transition allows us to identify the transition itself in an unambiguous and sharp way, as a
transition from a regime with a finite saturated state to one without.

There are two ways for turbulence to achieve saturation – it can either cascade
injected energy down to dissipation scales or, if it is internally driven by an instability,
it can assemble itself in a configuration that suppresses that instability, i.e. the initial
unstable equilibrium evolves into a new equilibrium with weaker instabilities. As
our model contains both ZF and zonal temperature perturbations, in principle it can
accommodate the physics of two possible instability-suppression mechanisms: shearing
of the turbulence by ZFs and modifying the background temperature gradient by zonal
temperature perturbations in order to cancel the ITG drive. Neither of these can be done
uniformly across the entire domain because we impose periodic boundary conditions in
the radial direction. Interestingly, we find that the zonal perturbations arrange themselves
in alternating wide regions of nearly constant zonal shear, strong enough to suppress
turbulence, and narrow regions of strong zonal temperature gradient, which flattens
the background temperature gradient and quenches the ITG instability. The resulting
‘staircase’-like overall radial temperature profiles are reminiscent of those seen in global
and local flux-driven GK simulations (Dif-Pradalier et al. 2010, 2017; Villard et al.
2013; Rath et al. 2016) and reported in experimental data (Dif-Pradalier et al. 2015).
The resulting turbulent heat flux is significantly suppressed. The stability, and hence
existence, of this zonal state is controlled by the background temperature gradient – a
large enough gradient renders the staircase configuration unstable and the system enters a
fully developed turbulent state. In § 4, we link this behaviour to the mechanism through
which the turbulence feeds the ZF, i.e. the turbulent flux of poloidal momentum. By
considering the linearly unstable ITG modes, we find a semi-analytical prediction of the
Dimits threshold at high collisionality and high temperature gradient.

The rest of the paper is organised as follows. In § 2, we describe our model, whose
detailed derivation is given in appendix A. Section 3 describes the nonlinear saturated
state and in particular the zonally dominated state near the Dimits threshold. In § 4, we
focus on the turbulent momentum flux of ITG turbulence subject to strong zonal shear,
and the physics of the Dimits regime and its breakup beyond the Dimits threshold. Our
results are summarised and conclusions are drawn in § 5.

2. ITG-driven dynamics in a Z-pinch

We consider the local dynamics of the perturbations of electrostatic potential and ion
temperature of a two-dimensional plasma (in the plane perpendicular to the magnetic
field) in a Z-pinch magnetic geometry with an equilibrium temperature gradient. Our
equations are derived in a highly collisional, cold-ion asymptotic limit of the electrostatic
ion GK equation. Their detailed derivation can be found in appendix A. Here we present
a summary of these equations, their physical motivation and key properties. If one wishes
to skip directly to § 3, which contains the analysis of the saturated state, one may want to
glance first at the model equations – these are (2.17) and (2.18).

2.1. Magnetic geometry
The magnetic geometry of constant magnetic curvature is chosen because it is the
simplest one that enables an ITG instability by coupling the electrostatic potential
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FIGURE 1. Illustration of the Z-pinch magnetic geometry.

and the temperature perturbations via the magnetic drift. The integration domain is
positioned in the magnetic field of a line of current (Z-pinch1) at radial distance LB
from the current line (see figure 1). We define the x and y axes as pointing radially
outwards and parallel to the current, respectively. We assume LB � Lx, Ly, where Lx
and Ly are the ‘radial’ (x) and ‘poloidal’ (y) sizes of the domain, respectively. Here we
use the terms ‘radial’ and ‘poloidal’ to reflect the intended similarity of the domain
to one positioned at the outboard midplane in a tokamak geometry. In that sense, we
can think of the radial x coordinate as perpendicular to flux surfaces. These surfaces
are parametrised by the poloidal y and field-parallel b̂ coordinates. Here B = Bb̂ is
the magnetic field and the unit vectors {x̂, ŷ, b̂} form a right-handed basis. In the
two-dimensional approximation employed here, all perturbed fields depend only on x and
y. The magnetic field of the Z-pinch with total current I is azimuthal around the current line
(as shown on figure 1) and has magnitude B(x) = 2I/cx. The radial gradient of this field
is then

1
B

dB
dx

= − 1
LB

. (2.1)

This value is constant across the domain to lowest order in Lx/LB � 1. We define LB to be
the magnetic scale length. Similarly, we can define the ITG scale length

1
LT

≡ − 1
Ti

dTi

dx
. (2.2)

In a tokamak, LB scales with the major radius of the device, while LT scales with the minor
radius. Here we will take the limit

LB � LT, (2.3)

equivalent to a large-aspect-ratio approximation in a tokamak geometry. We do this in
order to ensure that the magnetic drift in the density equation is of the appropriate
order, see (2.9). This drift is essential for the linear curvature-driven ITG instability that
we aim to capture.

1This simplification as a route to a minimal model of ion-scale turbulence goes back at least to Ricci et al. (2006).
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2.2. Electron response
The electron density is assumed to follow the modified adiabatic response

δne

ne
= e(φ − φ)

Te
, (2.4)

taking into account the fast parallel streaming of the electrons within the flux surfaces
of a tokamak, in the small-mass-ratio limit me/mi → 0 (Dorland & Hammett 1993;
Hammett et al. 1993). Here δne and ne are the perturbed and equilibrium electron densities,
respectively, φ is the electric potential, Te is the electron temperature and

φ(x) ≡ 1
Ly

∫
dy φ(x, y) (2.5)

is the poloidal (zonal) spatial average of the perturbed electric potential φ. We refer
to zonally averaged fields as being ‘zonal’. In the two-dimensional approximation, the
turbulent fields (e.g. φ) are independent of z, and hence we do not need to integrate over
the z direction. The difference

φ′(x, y) ≡ φ(x, y) − φ(x) (2.6)

is the ‘nonzonal’ part of the field.
A cautious reader has spotted that there is no way to define flux surfaces in the magnetic

geometry of a Z-pinch, as the magnetic field lines do not describe two-dimensional
surfaces, but rather close on themselves after one turn around the current axis. This
problem can be fixed by demanding that the magnetic field be, in fact, sheared:
B = B0(ẑ + xŷ/Ls), where Ls is the characteristic scale length of the magnetic shear. This
is the magnetic field of a helimak (Gentle & He 2008). The field lines define cylindrically
symmetric concentric flux surfaces and the electron parallel streaming mixes the azimuthal
(z) and poloidal (y) directions. We can then take the limit Ls → ∞ after performing
the small-mass-ratio (me/mi → 0) expansion and eliminate magnetic shear from the ion
equations, while retaining the flux-surface effect in the electron response.

2.3. Cold-ion limit
The cold-ion limit allows us to simplify the gyroaveraging operator that appears in GK. Its
corresponding Fourier-space operator is a multiplication by the Bessel function

J0

(
k⊥v⊥
Ωi

)
= 1 − 1

4
k2

⊥ρ2
i
v2

⊥
v2

ti
+ O

(
k4

⊥ρ4
i

)
. (2.7)

The square of the ion gyroradius ρi = vtimic/ZeB and the ion temperature Ti = miv
2
ti/2

are both proportional to the square of the ion thermal speed vti (here mi and Z are the ion
mass and charge in units of e, respectively). Thus, the cold-ion limit is equivalent to a
long-wavelength expansion O (k⊥ρi) � 1 with a finite sound radius O (k⊥ρs) ∼ 1, where
k⊥ is the perpendicular (to the magnetic field) wavenumber, ρs = ρi/

√
2τ is the sound

radius and τ = Ti/ZTe is the temperature ratio (Te is assumed finite). The sound radius ρs
is the natural normalisation for the microphysical length scales in the problem: see (2.9)
and (2.10) below and their derivation in appendix A.
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2.4. Model equations
We take the density and temperature moments of the electrostatic ion GK equation and
adopt the high-collisionality, cold-ion, long-wavelength, large-aspect-ratio ordering

∂t

νi
∼ τ ∼ k2

⊥ρ2
i ∼ LT

LB
� 1 ∼ ϕ

T
, (2.8)

where ϕ ≡ Zieφ/Ti is the normalised electric potential, T = δT/Ti is the normalised
ion-temperature perturbation and νi is the ion–ion collision frequency. The equations that
we obtain in appendix A are

∂

∂t

(
τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

)
− ρivti

LB

∂

∂y
(ϕ + T) + ρivti

2LT

∂

∂y

(
1
2
ρ2

i ∇2
⊥ϕ

)

+ 1
2
ρivti

({
ϕ, τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

}
+ 1

2
ρ2

i ∇⊥ · {∇⊥ϕ, T}
)

= −1
2
χρ2

i ∇4
⊥(aϕ − bT), (2.9)

∂T
∂t

+ ρivti

2LT

∂ϕ

∂y
+ 1

2
ρivti {ϕ, T} = χ∇2

⊥T, (2.10)

where the Poisson bracket is defined by

{ f , g} = b̂ · (∇f × ∇g) = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

, (2.11)

and

χ ≡ 8
9

√
2
π

νiρ
2
i (2.12)

is the thermal diffusivity. The numerical factor in (2.12) and the constants a = 9/40,
b = 67/160 in (2.9) are specific to the Landau collision operator (see appendix A.5).
These agree with more general calculations of the collisional perpendicular viscosity,
gyroviscosity and collisional heat flux (Mikhailovskii & Tsypin 1971; Catto & Simakov
2004, 2005).

Let us discuss the physics content of (2.9) and (2.10). Equation (2.10) is the
more obvious one – it describes the advection of the total temperature (perturbations
plus equilibrium) by the E × B drift VE = cb̂ × ∇φ/B, and the thermal diffusion
perpendicular to the magnetic field. Indeed, (2.10) can be rewritten as

d
dt

(δT + Ti) = χ∇2
⊥δT, (2.13)

where the advective time derivative is

d
dt

≡ ∂

∂t
+ VE · ∇. (2.14)

The advection of the equilibrium temperature VE · ∇Ti, which is the second term on the
left-hand side of (2.10), is responsible for the injection of free energy (see § 2.7), causing
the ITG instability.
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Equation (2.9) describes the time evolution of the sum of perturbed ion density and the
vorticity of the E × B drift velocity:

δni

ni
+ 1

ni

∫
d3v

(
ϕ − 〈〈ϕ〉R〉r

)
Fi = τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ + O

(
k4

⊥ρ4
i ϕ
)
, (2.15)

where ni and δni are the equilibrium and perturbed ion densities, respectively. See (A 21)
for more details. Thus, (2.9) can be thought of both as a perturbed-ion-density equation and
as the curl of the perpendicular-momentum equation. The equality in (2.15) follows from
the quasi-neutrality condition Zδni = δne, the electron response (2.4), the approximation
(2.7) and the ordering (2.8).

The first term of (2.9) is the time derivative of (2.15). The second term,
(ρivti/LB)∂y(ϕ + T), is the magnetic drift (both curvature and ∇B) of pressure
perturbations. This, or rather the ∂yT part of it, is essential for the curvature-driven ITG
instability. It appears in the density equation because the magnetic drift creates charge
separation, and hence electrostatic potential, which is then coupled to the perturbed density
via quasi-neutrality. The third term, (−ρivti/4LT)∂y(ρ

2
i ∇2

⊥ϕ), is a finite-Larmor-radius
(FLR) term originating from the gyroaveraged E × B drift. It is the diamagnetic drift
due to the equilibrium temperature gradient. The first of the nonlinear terms represents
the advection of the quantity (2.15) by the E × B drift. The second nonlinear term
∇⊥ · {∇⊥ϕ, T} is another FLR effect, which describes the E × B advection of diamagnetic
momentum. This term provides a crucial source of turbulent poloidal momentum flux that
destabilises the ZF profiles, destroying the ZF-dominated Dimits regime. The nature of
this term and its role in the Dimits transition are discussed in detail in § 4.3. Note that the
nonlinear terms in (2.9) and (2.10) are equivalent to the nonlinearities appearing in the
model analysed by Rogers et al. (2000) in the limit (2.8). Finally, the collisional terms in
(2.9) represent the viscous damping of the E × B flow and also couple the density and
temperature perturbations. The latter coupling does not appear to be important for the
results of this paper, but has been kept for consistency.

To prepare (2.9) and (2.10) for numerical analysis and distil important parameters, we
introduce normalised variables and fields:

t̂ ≡ 2ρsΩi

LB
t, x̂ ≡ x

ρs
, ŷ ≡ y

ρs
,

ϕ̂ ≡ τLBϕ

2ρs
= τLB

2ρs

Zieφ
Ti

, T̂ ≡ τLBT
2ρs

= τLB

2ρs

δT
Ti

,

κT ≡ τLB

2LT
, χ̂ ≡ LB

2ρs

χ

Ωiρ2
s

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

where Ωi = vti/ρi is the ion gyrofrequency. Dropping hats and subscripts (∇⊥ �→ ∇), we
obtain from (2.9) and (2.10) the following equations in normalised units:

∂t(ϕ
′ − ∇2ϕ) − ∂y (ϕ + T) + κT∂y∇2ϕ + {ϕ, ϕ′ − ∇2ϕ} + ∇ · {∇ϕ, T}

= −χ∇4(aϕ − bT), (2.17)

∂tT + κT∂yϕ + {ϕ, T} = χ∇2T. (2.18)
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These equations have two independent parameters: the normalised equilibrium
temperature gradient κT and the normalised collisionality χ .2 There are two other
parameters – Lx and Ly, the domain lengths in x and y – but any physically relevant results
must be independent of these if our equations are indeed a valid local model of the plasma.
This turns out to be true for the saturated Dimits state.

We solve (2.17) and (2.18) numerically in a doubly periodic box of size Lx and Ly using
a pseudo-spectral algorithm. We integrate the linear terms implicitly in time, while the
nonlinear terms are integrated explicitly using the Adams–Bashforth three-step method.
This integration scheme is similar to the one implemented in the popular GK code GS2
(Kotschenreuther, Rewoldt & Tang 1995b; Dorland et al. 2000).

2.5. Relationship to Hasegawa–Mima equation and related models
It is easy to see that setting κT = 0 effectively decouples (2.18) from (2.17) – taking an
initial condition T(t = 0) = 0 then leads to a trivial solution T(t) = 0. In that case, (2.17)
reduces to

∂t(ϕ
′ − ∇2ϕ) − ∂yϕ + {ϕ, ϕ′ − ∇2ϕ} = −aχ∇4ϕ, (2.19)

which is the well-known (modified) Charney–Hasegawa–Mima (mCHM) equation
(Hasegawa & Mima 1978) that includes the appropriate modified adiabatic electron
response, with viscous damping. Even though we have considered a situation with no
equilibrium density gradient, the magnetic drift provides a term identical to the one
that would have arisen from the E × B advection of an inhomogeneous equilibrium
density profile. This puts the model considered here in the same class of systems as
those proposed by Hasegawa & Wakatani (1983), Terry & Horton (1983) and others – all
essentially extensions of the Hasegawa–Mima equation with additional physics to account
for microinstabilities in the plasma.

As (2.19) is contained within the model considered in this paper, (2.17) and (2.18)
should, in principle, capture the behaviour of the mCHM equation as well as additional
temperature and ITG effects. There has recently been a significant effort to advance the
understanding of (2.19) and its relatives (Parker & Krommes 2013, 2014; Parker 2016; Ruiz
et al. 2016; Plunk & Bañón Navarro 2017; St-Onge 2017; Majda, Qi & Cerfon 2018; Zhu,
Zhou & Dodin 2018b, 2019, 2020a,b; Qi, Majda & Cerfon 2019; Ruiz, Glinsky & Dodin
2019; Zhou, Zhu & Dodin 2019). The mCHM equation does capture certain important
phenomena, such as the generation of ZFs through a secondary instability (see § 2.8);
however, its predictive capabilities for ITG turbulence are unclear. In particular, we shall
find that the break up of the Dimits state of (2.17) and (2.18) is, in an essential way,
governed by the behaviour of the temperature perturbations, which are absent in (2.19)
(see § 4).

2.6. Linear physics of ITG instability
Let us analyse the linear stability of (2.17) and (2.18). Dropping the nonlinear terms,
we look for Fourier modes ϕ, T ∝ exp[(γk − iωk)t + ik · r], where γk and ωk are the
real growth rate and frequency, respectively. Figure 2 shows γk as a function of the
wavenumber k. Qualitatively it resembles the growth rate of toroidal ITG modes in
tokamaks (Horton, Choi & Tang 1981). This is expected because the mechanism of the
toroidal ITG instability is similar to that of the two-dimensional curvature-driven ITG
instability. The terms that give rise to the instability are the magnetic drift term −∂yT in

2The reader might wonder what the experimentally relevant values of χ are. Using the data from Abel & Cowley
(2013), we find χ ≈ 6 × 10−4 for a deuterium plasma in JET. Thus, the low-collisionality regime is the one we expect to
be of greater interest.
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(a) (b)

FIGURE 2. (a) Dependence of the growth rate γk on ky for the streamer modes (kx = 0).
(b) Dependence of γk on kx and ky for κT = 0.36, χ = 0.1. The dashed line is the boundary
between stable and unstable modes (γk = 0). In § 3, we consider nonlinear simulations with
these same parameters.

(2.17) and the E × B advection of the equilibrium temperature κT∂yϕ in (2.18). We find
that the fastest growing linear modes are radially extended across the entire box, i.e. they
have kx = 0. Such modes are sometimes called ‘streamers’.

The exact dispersion relation is

(γk − iωk)
2(1 + k2) + (γk − iωk){−iky(1 + κTk2) + χk2[1 + (1 + a)k2]}

+ aχ 2k6 − κTk2
y − ikyχk2[1 + κT(1 − b)k2] = 0. (2.20)

We can get a good qualitative idea of the properties of the instability by setting χ = 0.
Then the solution of (2.20) is

γk − iωk = iky(1 + κTk2) ± ky

√
4κT(1 + k2) − (1 + κTk2)2

2(1 + k2)
, (2.21)

so the growth rate of the unstable mode is

γk = ky

√
(2

√
κT − 1 + κTk2)(2

√
κT + 1 − κTk2)

2(1 + k2)
. (2.22)

To simplify further, consider κT � 1 � κ
−1/4
T � k. Then

γk ≈ ky
√

κT . (2.23)

This expression, with the normalisations (2.16) undone, is the well-known
‘bad-curvature-instability’ growth rate (Beer 1995):

γk = Ωi
ρ2

i ky√
2τLBLT

. (2.24)

Note that there is another, physically distinct, ITG instability usually referred to as the
‘slab ITG mode’. This instability relies on coupling density and temperature through
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parallel-velocity perturbations, and so is naturally three-dimensional (Cowley et al. 1991).
This mode is entirely absent from our two-dimensional model.

Now let us return to the general dispersion. An important feature of the modes described
by (2.20) is the boundedness of the region of unstable wavenumbers in the k plane
(figure 2b). This allows us to integrate (2.17) and (2.18) without the need for artificial
dissipation. There are both collisionless and collisional mechanisms that lead to the
suppression of the ITG instability. Let us consider these mechanisms.

2.6.1. Collisionless bounds on unstable wavenumbers
It is easy to see that, in order to be positive, the collisionless growth rate (2.22) requires

k < kmax,FLR, where

k2
max,FLR = 1 + 2

√
κT

κT
. (2.25)

For κT < 1/4, (2.22) also gives a lower bound on the wavenumbers k of the unstable
collisionless modes, i.e. k > kmin,FLR, where

k2
min,FLR = 1 − 2

√
κT

κT
. (2.26)

Adding collisions re-establishes the instability at low k. We deem this to be an unimportant
peculiarity of our model, thus we shall only consider κT > 1/4.

2.6.2. Collisional bounds on unstable wavenumbers
For nonzero (χ > 0) collisionality, the term aχ 2k6 in (2.20) dominates over the ITG

term κTk2
y when k is large enough and gives strictly damped modes. To show this, let us

simplify (2.20) by writing it as

(γk − iωk + A)(γk − iωk + B − iC) − fAB + igAC = 0, (2.27)

where

A = χk2, B = aχk4

1 + k2
, C = ky

1 + κTk2

1 + k2
, f = κTk2

y

aχ 2k6
, g = bκTk2

1 + κTk2
.

(2.28a–e)

The instability threshold is given by γk = 0. The real and imaginary parts of (2.27) for
γk = 0 are

−ω2
k − ωkC + (1 − f )AB = 0, (2.29)

−ωk(A + B) − (1 − g)AC = 0. (2.30)

Substituting into (2.29) the value of ωk derived from (2.30), and using A �= 0, we find

g(1 − g)AC2 + BC2(1 − g) + (1 − f )B(A + B)2 = 0. (2.31)

Since g ∈ (0, 1),3 a necessary condition for instability is

f > 1 =⇒ aχ 2k6 < κTk2
y . (2.32)

3Note that for b < 0 or b > 1, there would be a collisional (κT = 0) instability. No such instability exists in our
model because the Landau collision operator gives g ∈ (0, 1).
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Thus, the region of unstable modes is bounded by k < kmax,χ , where

k2
max,χ =

√
κT

aχ 2
. (2.33)

2.7. Conservation laws
Equations (2.17) and (2.18) have several conservations laws describing the time evolution
of quantities that would be conserved in the absence of equilibrium gradients and
dissipation:

∂t

∫
dx dy 1

2 T2 = −κT

∫
dx dy T∂yϕ − χ

∫
dx dy (∇T)2 , (2.34)

∂t

∫
dx dy 1

2

[
ϕ′2 + (∇ϕ)2]

= −
∫

dx dy T∂yϕ − χ

∫
dx dy (∇2ϕ)

(
a∇2ϕ − b∇2T

)
, (2.35)

∂t

∫
dx dy

[
1
2ϕ

′2 + Tϕ′ + 1
2 (∇T + ∇ϕ)2]

= −χ

∫
dx dy

[(∇ϕ′) · (∇T) + a
(∇2ϕ

)2

+(a + 1 − b)
(∇2ϕ

) (∇2T
) + (1 − b)

(∇2T
)2
]
. (2.36)

These conservation laws can be deduced directly from (2.17) and (2.18): e.g. (2.34) is
obtained by multiplying (2.18) by T and integrating over x and y. They are also particular
cases of the conservation laws of the GK equation. The conservation of the variance of
T , given by (2.34), is the lowest-order version of the GK free-energy budget. The other
two conservation laws, (2.35) and (2.36), can be derived from the conservation of the
two-dimensional GK invariant (see Schekochihin et al. 2009; Plunk et al. 2010). This
invariant is a function of velocity in the GK formalism. The model presented here is
based on only two velocity moments of the distribution function, namely density and
temperature, and so the two-dimensional invariant yields two independent conservation
laws. More specifically, (2.35) is a generalisation of the ‘electrostatic GK invariant’. The
derivations of the three invariants of our system directly from the corresponding GK
invariants can be found in appendix B.

Equations (2.34) and (2.35) imply that a steady saturated state, i.e. ∂t = 0 for all averaged
quantities, can be achieved only if appropriate balance between injection and dissipation
terms is established:

χ

κT

∫
dx dy
LxLy

(∇T)2 = χ

∫
dx dy
LxLy

(∇2ϕ)
(
a∇2ϕ − b∇2T

) = Q, (2.37)

where the total radial heat flux Q is4

Q = − 1
LxLy

∫
dx dy T∂yϕ. (2.38)

4The dimensional ion heat flux Qi = V−1 ∫ d3r
∫

d3v(VE · x̂)(miv
2/2)δfi (Barnes et al. 2011), where V is the

volume of integration and δfi is the perturbed ion distribution function (see appendix A.1), is related to Q via
Qi/Q = 3niTivti(ρi/LB)2/τ 5/2

√
2.
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Thus, a saturated state would necessarily have a net positive ‘turbulent’ (or ‘anomalous’)
heat flux Q > 0. Note that the first term on the right-hand side of (2.34), which represents
injection of free energy, is κTQ. The turbulent heat flux is enabled by the turbulence excited
by the ITG instability.

Note as well that the linearly unstable modes have a positive radial heat flux. Indeed,
from (2.38),

Q =
∑

k

ikyTkϕ
∗
k =

∑
k

iky|ϕk|2 Tk

ϕk
. (2.39)

The relative phase of the temperature and potential perturbations can be obtained from
(2.18):

Tk

ϕk
= −ikyκT

γk − iωk + χk2
, (2.40)

where γk − iωk is the solution of the dispersion relation (2.20). Then

Q =
∑

k

κTk2
y |ϕk|2 γk + χk2

(γk + χk2)2 + ω2
k

> 0 (2.41)

for the unstable modes, which have γk > 0.
Finally, the third conservation law (2.36) has some peculiar properties. First, neither the

conserved quantity on the left-hand side nor the dissipation rate on the right-hand side is
sign-definite. Second, all of the evolution is dissipative, i.e. this invariant is not injected
by any equilibrium gradients and is constant in time if χ = 0.

2.8. Secondary instability
Before we delve into the study of nonlinear saturation, let us show how ZFs can be
generated from the linearly unstable ITG modes. Consider the stability of a streamer mode
with kx = 0, ky = q (the ‘primary’ mode) to infinitesimal ‘secondary’ perturbations:

ϕ = (ϕqeiqy + c.c.) + δϕ(x, y), (2.42)

T = (Tqeiqy + c.c.) + δT(x, y). (2.43)

A common way of analysing the secondary instability is to take a Galerkin truncation by
considering only four Fourier modes (kx, ky) = {(0, q), ( p, 0), ( p,±q)} and their complex
conjugates: the (0, q) mode is the primary streamer in (2.42) and (2.43) and the others are

δϕ = (δϕ+eiqy + δϕ−e−iqy + δϕ0)eipxeγ2t + c.c., (2.44)

δT = (δT+eiqy + δT−e−iqy + δT0)eipxeγ2t + c.c., (2.45)

where p is the radial wavenumber of the secondary perturbations, δϕ0 and δT0 are the ZF
and zonal temperature and δϕ± and δT± are known as ‘sidebands’. Substituting all this
into (2.17) and (2.18) and linearising the nonlinear terms for δϕ � ϕq and δT � Tq, we
obtain a closed set of equations. In order to keep things simple, we drop the linear terms in
(2.17) and (2.18) – this is valid when the amplitude of the primary mode is large enough,
so that interactions with it are more important for the evolution of δϕ and δT than the
effects of the equilibrium gradients and collisions. Observe that, due to the structure of the
Poisson bracket (2.11), all nonlinear terms are proportional to pq. Defining for convenience
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γ2 ≡ √
2pq|ϕq|γ̂2, we obtain the following equation for γ̂2:

(γ̂ 2
2 + U)(γ̂ 2

2 + V) = W, (2.46)

where

U = 1 + q2Re(Tq/ϕq)

1 + p2 + q2
,

V = p2Im(Tq/ϕq)
2 + p2

[
1 + Re(Tq/ϕq)

]2 − (
1 + q2

) [
1 + Re(Tq/ϕq)

]
1 + p2 + q2

,

W = p2q2

(1 + p2 + q2)2

[|Tq|2/|ϕq|2 + 2Re(Tq/ϕq)
] [

1 + Re(Tq/ϕq)
]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

We see that the growth rate γ2 of the secondary instability depends both on the amplitudes
of the primary fields ϕq and Tq and on their relative phase.

2.8.1. No temperature perturbation
If we set Tq = 0, i.e. ignore the temperature perturbation of the primary streamer, (2.46)

gives the well-known dispersion relation for the secondary instability of the modified
Hasegawa–Mima model (Rogers et al. 2000; Strintzi & Jenko 2007):

γ HM
2 = pq|ϕq|

√
2(1 + q2 − p2)

1 + p2 + q2
. (2.48)

This form of the secondary instability has long been associated with the strong ZFs
observed numerically in ITG turbulence (Hammett et al. 1993).5 We will show that
the inclusion of the temperature perturbations can introduce qualitative and quantitative
changes, and even suppress the secondary instability completely.

2.8.2. Long-wavelength limit
To simplify (2.46), we can consider the long-wavelength limit p � 1. Then (2.46) gives[

γ̂ 2
2 + 1 + q2Re(Tq/ϕq)

1 + q2

]
[γ̂ 2

2 − 1 − Re(Tq/ϕq)] = O( p2) ≈ 0. (2.49)

Thus, there are two independent branches of the secondary instability with instability
conditions given by Re(Tq/ϕq) + 1/q2 < −1 and Re(Tq/ϕq) > −1, respectively. The
second branch is a modified form of the long-wavelength Hasegawa–Mima secondary
instability (2.48)6:

γ2 = pq|ϕq|
√

2
(

1 + Re
Tq

ϕq

)
. (2.50)

We observe that (2.50) relies only on a handful of the nonlinear terms in (2.17) and (2.18).
Substituting (2.42) and (2.44) into (2.17) and taking the limit p � 1 gives us the following

5Especially in contrast with the much weaker ZFs observed in electron-temperature-gradient-driven (ETG)
turbulence on electron scales (Jenko et al. 2000; Strintzi & Jenko 2007). However, this distinction between ITG and
ETG turbulence has recently been challenged by Colyer et al. (2017), who found that the long-time saturated state of
ETG turbulence is also dominated by ZFs, although the system does go through a streamer-dominated quasi-saturated
state at earlier times.

6Plunk & Bañón Navarro (2017) found the same expression in the context of the ‘warm-ion’ approximation, i.e.
dropping the FLR terms in the nonzonal part of (2.17).
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equations for δϕ0, δϕ+ and δϕ−:

γ̂2δϕ0 = 1

|ϕq|
√

2

[
δϕ+(ϕ∗

q + T∗
q ) − δϕ−(ϕq + Tq)

]
, (2.51)

γ̂2δϕ+ = 1

|ϕq|
√

2
ϕqδϕ0, (2.52)

γ̂2δϕ− = − 1

|ϕq|
√

2
ϕ∗

qδϕ0. (2.53)

Substituting (2.52) and (2.53) into (2.51) yields precisely (2.50). We do not consider the
equations for the temperature perturbations because δT = 0 is a consistent solution and
it corresponds to (2.50). The terms on the right-hand side of (2.52) and (2.53) arise from
the zonal advection term

{
ϕ, ϕ′ − ∇2ϕ′} in (2.17) and represent the tilting of the primary

streamer by the ZF. The terms on the right-hand side of (2.51) are the poloidal E × B and
diamagnetic flows caused by the interaction of the primary mode and the two sidebands
(kx, ky) = ( p,±q). The quantity Re(Tq/ϕq) controls the response of the primary mode to
the zonal perturbation: Re(Tq/ϕq) > −1 yields an unstable ZF, while Re(Tq/ϕq) < −1
results in a stable, oscillatory perturbation.

Let us consider the collisionless case (χ = 0), where analytical progress is possible,
and ask for what values of κT are the two modes described by (2.49) unstable. Let us take
(kx, ky) = (0, q) to be the linear mode with the largest growth rate. We then define the
critical gradient κ sec

T for the long-wavelength secondary instability of the fastest-growing
streamer as the value of κT at which Re(Tq/ϕq) = −1. Using (2.21) and the relationship
(2.40) between Tq and ϕq, we obtain

Re
Tq

ϕq
= −1 + κTq2

2
. (2.54)

To determine q, we seek the maximum of γk, as given by (2.22) for kx = 0 and ky = q. We
find

∂γk

∂q
∝ κ2

Tq6 + 3κ2
Tq4 − q2 − 4κT + 1 = 0, (2.55)

where the equality holds for the most unstable mode. As an equation for q2, (2.55) is
a cubic with only one positive solution for κT > 1/4. Substituting that solution into
(2.54), we find Re(Tq/ϕq) as a function of κT . This relationship is given in figure 3.
In particular, we obtain that Re(Tq/ϕq) = −1 at κT = 1, as can indeed be verified
analytically from (2.55) and (2.54), and Re(Tq/ϕq) < −1 for κT > 1. We also find that
Re(Tq/ϕq) + 1/q2 > −1 always. Thus, for κT > 1, the most unstable collisionless ITG
mode is stable to the secondary perturbations. Note that (2.54) depends crucially on the
diamagnetic drift κT∂y∇2ϕ in (2.17). If we do not include the diamagnetic drift, we find that
Re(Tq/ϕq) = −1/2 regardless of κT and q, and thus the collisionless secondary instability
is never quenched.

2.8.3. General case
Let us go back to the general secondary dispersion relation (2.46). Its solution is

γ̂ 2
2 = −(U + V) ±

√
(U − V)2 + 4W
2

, (2.56)
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FIGURE 3. Temperature-gradient dependence of Re(Tq/ϕq) (solid) and Re(Tq/ϕq) + 1/q2

(dashed) for the most unstable collisionless (χ = 0) mode. We find that Re(Tq/ϕq) < −1 for
κT > 1 and Re(Tq/ϕq) + 1/q2 > −1 for all κT . The secondary instability is present only for
κT < 1.

where

U + V = p2
[
1 + Im(Tq/ϕq)

2] + p2
[
1 + Re(Tq/ϕq)

]2 − Re(Tq/ϕq)

1 + p2 + q2
. (2.57)

We can use the primary dispersion relation (2.20) to show that Re(Tk/ϕk) < 0, and hence
U + V > 0, for any unstable primary mode with wavenumber k. Indeed, the real part of
(2.40) is

Re
Tk

ϕk
= kyκTωk

|γk − iωk + χk2|2 < 0 (2.58)

if kyωk < 0. Let us show that this is true. For k � 1 and κT > 1/4 (the reasons for the
latter are discussed at the end of § 2.6.1), the dispersion relation (2.20) gives simply
kyωk = −k2

y/2 < 0. Since the solutions to (2.20) are continuous functions of k, if kyωk
changes sign and becomes positive, then ωk = 0 somewhere. However, if we set ωk = 0,
the imaginary part of (2.27) gives γk = (g − 1)A < 0. Therefore, kyωk cannot change
sign within the region of linear instability and so kyωk < 0 for all linearly unstable
modes.

We now consider the solution (2.56) assuming that the relationship between ϕq and
Tq is given by (2.40) with ky = q and γk and ωk corresponding to the most unstable
mode. This gives us γ2 as a function of κT , χ and p. Figure 4 shows the real part of γ2
maximised over p for each pair of equilibrium parameters κT and χ , and the wavenumber
pmax at which that maximum is attained. Let us discuss this figure. There are three distinct
regions:

(i) κT < κ sec
T , where κ sec

T is defined as the value of κT where Re(Tq/ϕq) = −1; in this
region, Re(Tq/ϕq) > −1. Additionally, UV − W < 0 for p = pmax, so γ̂ 2

2 given by
(2.56) is real and positive. The instability exists for arbitrarily small values of
p (i.e. for an arbitrarily long wavelength of the ZF). Increasing the temperature
gradient κT towards κ sec

T has a dramatic effect on the secondary instability of the
most unstable mode: it diminishes both the growth rate and the region of zonal

https://doi.org/10.1017/S0022377820000938 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000938


Dimits regime of curvature-driven ITG turbulence 17

(a) (b)

FIGURE 4. (a) Secondary-instability growth rate (2.56) of the most unstable streamer mode,
maximised over all values of p. The growth rate vanishes on the Re(Tq/ϕq) = −1 curve (shown
in black). (b) Radial wavenumber pmax at which the maximum growth rate shown in panel (a)
is attained. A discontinuity in the most unstable wavenumber across the Re(Tq/ϕq) = −1 curve
is evident. The absolute-stability region (iii), visible in the bottom right of both panels, where
γ2 = 0, is the region where (U − V)2 + 4W is always positive and γ2 is purely imaginary.

wavenumbers that go unstable. On the line κT = κ sec
T , γ̂2 is purely imaginary and

there are no growing secondary modes, just like in the long-wavelength analysis
of § 2.8.2. Indeed, substituting Re(Tq/ϕq) = −1 in (2.47), we obtain W = 0 and
U, V > 0. Then, by (2.56), γ̂ 2

2 = −U or −V . Figure 5 (κT = 0.7, 1.1, 1.5) shows γ2
versus p in region (i).

(ii) κT > κ sec
T . Increasing κT past κ sec

T changes the fastest-growing secondary mode
discontinuously. The fastest-growing secondary mode now has UV − W > 0 and
(U − V)2 + 4W < 0. Hence the γ̂ 2

2 given by (2.56) is complex. In this region, there
is always γ̂2 with a positive real part. The peak-growth wavenumber pmax changes
discontinuously across the Re(Tq/ϕq) = −1 line. For κT > κ sec

T , the secondary
instability does not extend to arbitrarily small p (figure 5, κT = 1.9, 2.3), consistent
with the discussion of the long-wavelength secondary instability in § 2.8.2.

(iii) κT > κ sec
T , but now (U − V)2 + 4W > 0 for all values of p, so γ̂ 2

2 given by (2.56) is
real and negative. The location of this region of stability depends on the value of
Im(Tq/ϕq), as well as Re(Tq/ϕq), and does not have a simple analytic form like the
boundary between regions (i) and (ii).

This analysis of the secondary instability suggests that the system will fail to generate
ZFs at a high enough κT . In what follows, we will indeed find that the zonally dominated
Dimits regime ceases to exist when the temperature gradient exceeds a certain threshold,
κT > κc

T . However, the naïve guess κc
T ≈ κ sec

T , as given by the secondary-instability
threshold of the most unstable streamer, does not yield satisfactory agreement with the
observed threshold for the Dimits regime (see § 4.4). The secondary-instability picture is
incomplete because we must take into account not only whether ZFs can be generated
by the ITG modes, but also whether the strong ZFs that support the Dimits regime are
resilient to nonzonal perturbations. We shall pick up this topic in § 4.
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(a) (b)

FIGURE 5. (a) Secondary-instability growth rate for χ = 0.1 and a number of values of κT
versus zonal (radial) wavenumber, as given by (2.46). The primary mode ϕq, Tq is taken to be the
most unstable one in every case. (b) Re(Tk/ϕk) for the fastest-growing linear mode k = (0, q)
for χ = 0.1 as a function of κT . The dashed lines correspond to the same values of κT as in
panel (a).

2.9. Tertiary instability
To study the stability of a zonal state, we consider infinitesimal ITG perturbations over a
background of strong ZF and zonal temperature:

ϕ = ϕ + ϕ′, ϕ′ � ϕ,

T = T + T ′, T ′ � T,

}
(2.59)

and linearise (2.17) and (2.18) to obtain evolution equations for ϕ′ and T ′. We refer to the
ITG modes governed by these linearised equations as ‘tertiary modes’ and to their linear
instability as the ‘tertiary instability’ (in truth, this is just the primary ITG instability but
for an equilibrium state modified by the zonal fields). We will discover that this instability
can seed turbulent perturbations in the Dimits regime, but is not solely responsible for the
transition to strong turbulence (see §§ 3 and 4). Further discussion of the tertiary instability
has been exiled to appendix C.

3. Nonlinear saturation and zonal staircase

We now proceed to investigate the saturated state of (2.17) and (2.18) numerically and
semi-analytically. A well-defined saturated state is found only for temperature gradients
below a critical gradient κT < κc

T , where κc
T is an increasing function of collisionality

χ (see figure 6). The saturated state is always dominated by strong ZFs and exhibits
levels of turbulent transport that are low compared to the equilibrium diffusive transport
(Q � χκT). We will refer to this state as the Dimits state. The critical gradient κc

T is then
the nonlinear critical gradient that marks the breakup of the zonally dominated state and
the onset of fully developed ITG turbulence. We will relate κc

T to the resilience of the
zonal profiles in the face of nonzonal perturbations, which is in turn determined by the
behaviour of turbulence in the presence of strong (comparable to the ITG growth rate)
zonal shear. For κT < κc

T , zonally sheared turbulence enhances the ZFs that are doing the
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(a)

(b)

FIGURE 6. (a) Box-averaged heat flux Q as a function of κT and χ . The heat flux Q is defined in
(2.38) and given here in units of 3niTivti(ρi/LB)2/τ 5/2

√
2; see also the footnote 4 on p. 12. The

shaded (in red) region is beyond the Dimits threshold, where strong turbulence resides (see § 4.5).
Bold-framed is the parameter point corresponding to SimL and SimH, namely, κT = 0.36, χ =
0.1. (b) Box-averaged heat flux Q in the saturated state versus χ for various κT .

shearing through a negative turbulent viscosity. Beyond the Dimits threshold (κT > κc
T),

the turbulent viscosity is positive, and strong, ITG-suppressing ZFs cannot be maintained.
These results are presented in § 4, but first, in this section, we describe the saturated state
near the Dimits threshold.

Figure 6 shows the heat flux Q versus κT and χ . We have checked that all simulations
have converged by inspection of their heat flux and ZF profiles, and by ensuring that they
run for several box-scale diffusion times tbox = (Lx/2π)2/aχ . The turbulent heat flux Q
depends strongly on the temperature gradient and increases monotonically with increasing
κT . In contrast, its dependence on the collisionality is much weaker and non-monotonic
(see figure 6b). Close to the Dimits threshold, Q decreases with increasing χ (which takes
it away from the threshold), whereas farther away from the threshold, it increases and then
plateaus with increasing χ . An increase of flux with collisionality for Z-pinch turbulence
was noted by Ricci et al. (2006).
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(a) (b)

FIGURE 7. Comparison of the spectra of turbulence for SimL (solid) and SimH (dashed),
described in § 3. (a) ZF velocity |kxϕkx |2 (black) and zonal temperature (orange) |Tkx |2 spectra.
(b) Streamer (kx = 0) contribution to (2.35), i.e. (1 + k2

y)|ϕ′
ky

|2 (black) and temperature |T ′
ky

|2
(orange). A clear peak at ky ≈ 0.25 is seen. This corresponds to the dominant poloidal
wavenumber in the ZF minima (see also figure 26 in appendix C). The fastest linearly growing
streamer has ky ≈ 1.

In what follows, a significant fraction of the detailed analysis is done using two
simulations of the low-collisionality near-marginal state with parameters κT = 0.36,
χ = 0.1, Lx = 100, Ly = 150: one with higher (507 × 337) and one with lower (167 ×
167) number of Fourier modes (the lower-resolution simulation is used for longer runs
due to its lower computational cost). They have the same initial condition, taken from an
already saturated simulation. Both the low- and high-resolution simulations show good
convergence of their spectra (see figure 7). We refer to these two simulations as ‘SimL’
and ‘SimH’, respectively.

In the near-marginal Dimits state, turbulence is suppressed by a quasi-static ‘zonal
staircase’ arrangement of the ZFs and zonal temperature perturbations. This structure is
reminiscent of the ‘E × B staircase’ observed in global GK simulations (Dif-Pradalier
et al. 2010, 2015, 2017; Villard et al. 2013, 2014). The zonal staircase consists of interleaved
regions of strong zonal shear that suppresses the ITG turbulence in those regions, and
localised turbulent patches at the turning points of the ZF velocity. We refer to the former
as the ‘shear zones’ (§ 3.1) and to the latter as the ‘convection zones’ (§ 3.2). A typical
near-marginal ZF configuration can be seen in figure 8 and corresponding snapshots of
the perturbed temperature in figure 9. Turbulence is always present, in a highly localised
form, in the convection zones, but not in the shear zones.

The ZF in the staircase is not steady, but subject to viscous decay. In the
low-collisionality (χ � 1), near-marginal regime, this decay is slow and turbulent bursts
are triggered periodically when the zonal shear in the shear zones has decayed to a level
that is insufficient for the suppression of turbulence. These bursts lead to a significant
(order-of-magnitude) increase in the radial heat flux. Similar bursts were reported by
Kobayashi & Rogers (2012) in entropy-mode-driven Z-pinch turbulence. In our system,
they are seeded by highly localised, coherent, turbulent structures, reminiscent of those
reported by van Wyk et al. (2016) in GK turbulence with an imposed equilibrium flow
shear (see § 3.3). A typical turbulent burst is illustrated in figures 8–10 where we see the
evolution of the quiescent state into a turbulent one and then back. Figure 11 shows a
longer time evolution for the same parameters, illustrating the (quasi-)periodic nature of
the bursts. At higher collisionality, the ZFs decay faster, the turbulent bursts start to overlap
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and it becomes difficult to isolate quiescent periods from turbulent ones. This state is more
homogeneous in time and does not have well-defined oscillations, unlike the bursty state
at low collisionality. However, we find that the mechanism that governs the stability of
the Dimits state and the transition to strong turbulence is very similar for all values of
collisionality that we have explored (see § 4.2).

We now proceed to describe the features of the zonal staircase in more detail.

3.1. Shear zones
3.1.1. Suppression of turbulence

The zonal staircase is arranged in such a way that it efficiently suppresses turbulence in
the shear zones via strong ZF shear. We find that this shear, S ≡ ∂2

x ϕ, satisfies S � γmax,
where γmax is the largest linear ITG growth rate determined from the dispersion relation
(2.20). The notion that ITG turbulence requires comparable S and γmax to be suppressed
by shear is known as the ‘quench rule’ (Waltz, Kerbel & Milovich 1994; Waltz, Dewar
& Garbet 1998; Kinsey, Waltz & Candy 2005; Kobayashi & Rogers 2012). Quantitatively,
this is supported by figure 12, which shows that the time- and space-averaged (over the
shear zones) shear satisfies S ≈ 2γmax over a range of simulation parameters.7 Note that
the particular snapshots of zonal profiles seen in figure 8 suggest S ≈ γmax. However, the
time-averaged S is larger due to the variation of shear over time (see also figure 13).

3.1.2. Decay of ZFs
Let us study the viscous decay of the ZFs. The equation for the evolution of the ZFs is

given by the zonal part of (2.17):

∂t∂
2
x ϕ = ∂2

x ∂xϕ∂y (ϕ + T) + χ∂4
x

(
aϕ − bT

)
. (3.1)

Integrating (3.1) once yields

∂tuy = ∂x
[
(∂xϕ) ∂y (ϕ + T) + χ∂2

x

(
aϕ − bT

)] = −∂x (Πt + Πd) , (3.2)

where the ZF velocity is uy ≡ ∂xϕ and we have identified the turbulent, Πt ≡
−(∂xϕ) ∂y (ϕ + T), and diffusive, Πd ≡ −χ∂2

x (aϕ − bT), radial fluxes of poloidal
momentum. The integration constant in (3.2) is zero because both sides of the equation
are exact derivatives with respect to x and our domain is periodic. Integrating (3.2) once
more yields a term that is not necessarily an exact derivative – the turbulent momentum
flux Πt:

∂tϕ + Πt + Πd = Π, (3.3)

where the integration constant Π = (1/Lx)
∫ Lx

0 dx Πt is the total box-averaged poloidal
momentum flux. However, (2.17) and (2.18) are invariant under the symmetry

x �→ −x, y �→ y, ϕ �→ −ϕ, T �→ −T. (3.4)

Under this symmetry, Π �→ −Π , a property of our model inherited from GK (Parra,
Barnes & Peeters 2011). Therefore, assuming that the volume-averaged solutions to (2.17)
and (2.18) respect (3.4), we conclude that Π = 0. This is confirmed by our numerical
solutions. Thus, the right-hand side of (3.3) vanishes.

7The averaging is performed numerically over regions of near-uniform zonal shear, where, at every time step, we
identify the radial locations of the uniform shear zones by applying the following conditions: ∂3

x ϕ < 0.1 max{∂3
x ϕ} to

isolate regions of near-uniform shear and ∂2
x ϕ < 0.5 max{∂2

x ϕ} to exclude the large variations of shear around the ZF
extrema (see figure 8).
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(a)

(b)

(c)

FIGURE 8. Radial profiles of ZF (∂xϕ), zonal shear (∂2
x ϕ) and zonal temperature gradient (∂xT).

The dotted green line corresponds to the largest linear ITG growth rate ±γmax. The dotted black
line shows the value of the equilibrium temperature gradient κT . Note that the turbulence that
develops in the shear zones does not disturb the ZF and zonal shear significantly. See figure 9 for
two-dimensional snapshots at these same times. The data are from SimH. The locations of the
ZF extrema are determined by the initial conditions used (see § 3.1.3).
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(a) (b)

(c) (d )

FIGURE 9. Snapshots of temperature perturbations in the Dimits state (supplementary movies,
entitled as movie_fig9.mp4, available at https://doi.org/10.1017/S0022377820000938). The data
are from SimH. (a) Quiescent, t = 10; there is a ZF minimum at x = 24.5 and a ZF maximum
at x = 47. (b) Ferdinons visible around x = 65, t = 136. A zoomed-in version can be found in
figure 18. (c) Turbulent burst, t = 250. (d) Relaxation back to the zonal staircase after the burst,
t = 490. The full time history of SimH can be found in figure 10 and the radial profiles of the
zonal fields and heat flux are shown in figure 8.

(a)

(b)

FIGURE 10. (a) Time evolution of the total heat flux Q during a turbulent burst for SimH.
The dashed lines correspond to the times used for figures 8 and 9. (b) Time trace of the local
(integrated only over y) radial turbulent heat flux Qt(x) = −T∂yϕ as a function of radial position.
A turbulent burst in the right half of the domain is clearly visible for t ∈ [100, 400]. The streaks
correspond to radially drifting ferdinons (see § 3.3).

During the quiescent periods of the Dimits-state evolution (i.e. between turbulent
bursts), the turbulent momentum flux in the shear zones is negligible compared to the
diffusive momentum flux, Πt � Πd. This is a consequence of the suppression of the
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(a)

(b)

FIGURE 11. Box-integrated radial heat flux Q and ZF velocity (∂xϕ) versus time for SimL
(κT = 0.36, χ = 0.1). Each turbulent burst is accompanied by an order-of-magnitude increase
in Q and a radial oscillation of the locations of the ZF maxima.

FIGURE 12. The ZF shear S (time- and space-averaged over the shear zones) versus maximum
linear ITG growth rate γmax (as given by 2.20). The data are taken from a number of simulations
over a range of parameters: κT ∈ [0.16, 7.29] and χ ∈ [0.1, 10]. The error bars represent the
smallest and the largest values of the spatially averaged ZF shear for each simulation. The best-fit
line (dashed) is S ≈ 2γmax.

ky �= 0 ITG modes by the zonal shear.8 We also find that the zonal temperature gradient
∂xT is approximately constant in the quiescent shear zones (see figure 8), so ∂2

x T = 0.
Therefore, (3.3) becomes

∂tϕ = aχ∂2
x ϕ. (3.5)

This is a diffusion equation governing the viscous decay of the ZFs with a collisional
viscosity aχ . As figure 13 shows, quiescent periods of low heat flux and, thus, low levels

8Note that Πt is not small if there is turbulence present in the shear zones (which happens in the run up to and during
turbulent bursts) – we investigate Πt in § 4.
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FIGURE 13. Heat flux Q (orange) and zonal shear ∂2
x ϕ (black) versus time for SimL. The

highlighted (in green) sections of the zonal shear correspond to the quiescent periods. They
are identified as those in which Q is smaller than a threshold value (dashed black line), defined
as 60 % of the time-averaged Q. The average decay rate of the zonal shear in the thus-identified
quiescent periods is γ ≈ −3.5 × 10−4 and the decay rate given by (3.6) is γs ≈ −3.6 × 10−4.

of nonzonal perturbations are correlated with the periods of decay of the zonal shear. We
find that, despite the ever-present turbulence in the convection zones, where (3.5) does not
hold, the decay rate of the zonal shear is closely approximated by the viscous decay rate
of the longest-wavelength ZF that comprises the zonal staircase, i.e.

γs = −aχ

(
2πn
Lx

)2

, (3.6)

where n is the number of periods of the zonal staircase in the domain of radial size Lx.
Let us now discuss what the ZF periodicity is.

3.1.3. Scale of ZFs
In general, increasing/decreasing the radial extent of the integration domain by a factor

increases/decreases the number n of shear zones by the same factor. This suggests that the
characteristic length scale of the staircase, i.e. the time-averaged radial separation of ZF
extrema, is determined by a box-size-independent mechanism (see further discussion in
§ 5). Ascertaining definitively whether this is the case is made difficult by the numerically
observed time scales of convergence, which are at least an order of magnitude larger than
the longest linear time scales, i.e. than the box-scale diffusion time tbox = (Lx/2π)2/aχ

(see figure 14). Note that the long-time evolution of the zonal profile and its length scale is
not accompanied by a significant change in the average heat flux. In fact, the latter appears
to reach saturation on time scales comparable to the box-scale diffusion time. Therefore, it
is reasonable to trust the numerical values of the box-averaged heat flux (e.g. those shown
in figure 6), even though we could not be certain that the zonal profiles have reached
ultimate saturation.

As we increase collisionality and thus move away from the near-marginal regime
and into the collisionality-independent regime (the plateau seen in figure 6b), the ZFs
become more dynamic – they can merge, split and drift, as shown in figure 15(b). Here
we focus on the near-marginal regime and the transition to strong turbulence, so this
higher-collisionality regime will not be studied.
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(a)

(b)

(c)

FIGURE 14. (a) Heat flux, raw (black) and rolling-averaged with a window of 6000 time units
(orange) for κT = 0.36, χ = 0.1, Lx = 100, Ly = 100 and 125 × 125 Fourier modes. This is
the same as SimL, but we have used small-amplitude white noise as an initial condition. The
diffusion time for the box-scale ZF is tbox = (Lx/2π)2/aχ ≈ 11 200. Convergence to a box-sized
ZF occurs on a very long time scale (> 50tbox). (b) Same as panel (a), but for κT = 4, χ = 1,
Lx = 200 and Ly = 200. Here tbox = (Lx/2π)2/aχ ≈ 4500. (c) Same as panel (b), but with a
single-peak triangular ZF as an initial condition. It is evident that the ZF profile does not converge
to a single peak.
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(a)

(b)

FIGURE 15. Same as figure 11, but for χ = 1.5. The diffusion time for the box-scale ZF is
tbox = (Lx/2π)2/aχ ≈ 750. The locations of the ZF extrema of the staircase drift significantly
over times comparable to tbox.

Even though the zonal staircase arises naturally from white-noise initial conditions
for both the zonal and the nonzonal fields, its shape suggests initialising the ZFs with
a ‘triangular’ pattern. We find that this helps achieve more quickly a ‘less noisy’ and
more symmetric final state, which is easier to handle both numerically and analytically. Of
course, we do not know in advance how many ‘steps’ the staircase will ‘choose’ to have in
the saturated state, so their number for the ‘triangular’ initial condition is just an informed
guess. Most results in this paper are from simulations that used such a triangular ZF initial
condition, including SimL and SimH. Notable exceptions are figures 6, 12 and 23, where
we used data from many simulations, some with white-noise initial conditions and others
with ‘triangular’ ones.

3.2. Convection zones
The convection zones located at the extrema of the ZFs contain localised patches of
ITG turbulence and have a high radial turbulent heat conductivity (see figures 8 and 9).
The imposed equilibrium temperature gradient is flattened in the convection zones and
slightly steepened in the shear zones. This results in a staircase-like radial temperature
profile, shown in figure 16. The turbulence in the convection zones is driven by a tertiary
instability, localised by the zonal shear. In the low-collisionality, near-marginal regime,
which we consider to be the most important (see the footnote 2 on p. 9), there is a
qualitative difference between the way in which the tertiary instability operates at the
ZF maxima and minima. A similar difference exists in both the Hasegawa–Mima equation
(Zhu et al. 2018b) and GK (McMillan et al. 2011).

3.2.1. Turbulence at ZF minima
At the ZF minima, we find both ITG and Kelvin–Helmholtz (KH) tertiary instabilities.

The former is dominant (faster) and saturates by producing a zonal temperature gradient
that cancels the background temperature gradient. This effectively decouples the evolution
of the temperature perturbations from that of the electrostatic potential and leaves a KH
mode that seems to determine the poloidal wavenumber at the ZF minima (the peak at
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FIGURE 16. Time-averaged normalised total temperature (SimL) relative to the absolute
temperature TR at the right edge of the domain: (τLB/2ρs)(Ti − TR + δT) = (Lx − x)κT + T .
A strong flattening of the gradient is visible around the ZF minima at x ≈ 25 and 75, a weaker
one around the ZF maximum at x ≈ 50.

ky ≈ 0.26 in figure 7 is precisely the wavenumber of the fastest-growing KH mode at the
ZF minima). Further details of the tertiary instability at the ZF minima and its saturation
can be found in appendix C.3.1.

3.2.2. Turbulence at ZF maxima
In contrast to the ZF minima, the regions around the ZF maxima cannot support a

KH instability because the Rayleigh–Kuo criterion for instability is not satisfied there
(Kuo 1949; Zhu, Zhou & Dodin 2018a) (see appendix C.2). The ITG instability in these
regions is significantly weaker than that at the ZF minima and does not appear to saturate
in a similar fashion (by cancelling the equilibrium temperature gradient). The profile of
the zonal temperature gradient shown in figure 8 suggests that the instability might not
even be localised to the ZF maximum itself: there are two peaks of the zonal temperature
gradient visible on either side of the ZF maximum at x ≈ 47 at t = 10. The poloidal scale
of the modes at the ZF maxima is significantly longer than that at the ZF minima (see
appendix C.3.2).

Additionally, an asymmetric flattening of the zonal shear develops on one side of the
ZF maximum, accompanied by a drift of the location of this maximum in the opposite
direction (such a flattening is seen to the right of the central ZF maximum at x ≈ 47
in figure 8). Eventually, ferdinons are launched in the direction of the flattening (see
also § 3.3). This is likely due to the inability of the diminished zonal shear there to
suppress the nonzonal perturbations. The burst of ferdinons causes the ZF maximum
to change the direction of its drift and a flattening of the zonal shear develops on the
opposite side. This causes an oscillation of the position of the ZF maximum, as seen
in figure 11(b).

Thus, while turbulence is suppressed by zonal shear in the shear zones and by the
cancellation of the equilibrium temperature gradient by the zonal temperature around
the ZF minima, the regions around the ZF maxima remain locally unstable. As long as
the zonal shear in the shear zones is strong enough to suppress turbulence, this instability
is tamed, with any perturbations launched from the unstable regions into the shear zones
unable to survive. Once the zonal shear decays below a certain level, it is no longer able
to suppress these perturbations (ferdinons; see § 3.3) and a turbulent burst is initiated.
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(a) (b)

FIGURE 17. Numerically determined time-averaged values of δ (see 3.7) at the global maximum
(a) and global minimum (b) of the ZFs in the simulations whose heat flux is shown in figure 6.
We find no significant variation of δ with χ or κT , except at large χ .

Thus, the quasi-stationary zonal staircase contains the seeds of its own destruction: the
perilous combination of decaying ZFs and unstable convection zones around the ZF
maxima.

3.2.3. Scale of convection zones
The width of the convection zones can be characterised by the quantity

δ ≡
√

∂xϕ

∂3
x ϕ

. (3.7)

Figure 17 shows that δ does not depend very strongly on either κT or χ , except far
from the marginal state, where collisionality appears to smooth out the gradients in the
convection zones and thus increase δ. This suggests that near the Dimits threshold, δ is an
O (1) quantity in the normalised units of (2.17) and (2.18), i.e. it is equal to a few times the
sound radius ρs.

3.3. Ferdinons
After the ZF has decayed sufficiently to weaken its ability to suppress perturbations,
vortex-like propagating structures are spawned from the ZF maxima and drift radially
through the shear zones. Strikingly similar structures – ferdinons – have been observed
in GK simulations with imposed background flow shear (van Wyk et al. 2016, 2017).
Figures 8 and 9 (t = 136) show a particular instance of the launching of ferdinons (see
also figure 10).

As the ferdinons smash into the turbulent modes in the convection zones at the ZF
minima, more structures are produced and a burst of turbulence ensues (see figures 8c
and 9c). These travelling structures, as well as the resulting turbulence, cause a significant
spike in the box-averaged heat flux (see figure 10). As figure 8 shows, they do not carry
a significant ZF perturbation. They are created and propagate even if the ZF is held
artificially constant in the numerical simulations, but the zonal temperature is left to evolve
according to (2.18). In other words, a localised ZF perturbation is not an essential part of
these structures.

Figure 18 shows that ferdinons consist of a vortex dipole and a strong temperature
perturbation trapped in one of the vortices of this dipole. There are ferdinons carrying
both positive (‘hot’) and negative (‘cold’) temperature perturbations. Hot ferdinons
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drift towards the cooler (right) side of the domain, while the cold ones drift in the
opposite direction, towards the hotter (left) side (see also figure 10). Figures 18(a) and
18(b) demonstrate that the direction of the drift does not depend on the sign of the
zonal shear. Net flow circulation around the ferdinons is also independent of the sign
of the shear – it is always anticlockwise for hot and clockwise for cold ones (see
figure 18c).

Note that the ferdinons that emerge in our simple ITG model bear a striking qualitative
resemblance to the avalanches reported by Villard et al. (2013) in global GK simulations,
namely they propagate both inwards and outwards, but always with a positive heat
flux, and originate from the local maxima of the ZF. Simple soliton solutions have
already been proposed as a model for GK avalanches (McMillan et al. 2009; McMillan,
Pringle & Teaca 2018). Vortex-dipole solitons called ‘modons’ have been investigated in
Hasegawa–Mima-like models of turbulence (Horton & Hasegawa 1994). We do not yet
know how and whether any of these are related to the ferdinons that we observe.

Let us discuss what we expect the ferdinon solution to be. Numerically, we find that
the existence and propagation of these structures depend crucially on the two ITG-drive
terms in (2.17) and (2.18), as well as on the nonlinear terms. In particular, the poloidal
localisation of these structures is due to the nonzonal–nonzonal interactions. Indeed, we
have found that (2.17) and (2.18) with the nonzonal–nonzonal nonlinear terms taken out (in
what is sometimes referred to as the ‘quasi-linear approximation’; see Srinivasan & Young
(2012)) do not have ferdinon solutions. However, the quasi-linear system does have soliton
solutions that are not localised poloidally, but rather appear to have a definite poloidal
wavenumber ky. These solutions might be related to those described by McMillan et al.
(2009) and Zhou, Zhu & Dodin (2020). Models have been proposed for structure formation
in a sheared flow that rely on the tilting of turbulence by shear and a nonzero group velocity
to produce moving structures (McMillan et al. 2018; Zhou et al. 2020). The radial group
velocity is (at least in the Hasegawa–Mima-related models) proportional to the product
kxky,9 which acquires a definite sign in the presence of flow shear (§ 4.3). However, we
observe ferdinons moving in both radial directions in regions of definite zonal shear and,
thus, definite radial group velocity. Therefore, at the moment, we consider it unlikely that
the propagation of ferdinons can be explained using such group-velocity arguments. We
leave the detailed investigation of ferdinon generation and propagation for future work.

Understanding ferdinons and their properties can also put an upper bound on the
radial scale of the ZF. Indeed, our numerical simulations show that the ZFs can have a
well-defined radial scale smaller than the box size (§ 3.1.3). This scale could perhaps be
estimated via a causality argument – assuming that ferdinons, and, thus, turbulence, can
only propagate a finite radial distance in a region of self-consistently evolving zonal shear,
then an infinitely wide shear zone cannot be sustained for long. Note that finite-lifetime
ferdinons over a dynamic ZF background, with which they can interact and gain or lose
energy, are not in contradiction with the infinite-lifetime ferdinons seen by van Wyk et al.
(2016), where a constant flow shear was imposed, and thus the shear profile was unable to
react to the presence of ferdinons.

Once ferdinons are generated and turbulence develops in the shear zones, our analysis of
the viscous decay of the zonal staircase in § 3.1.2, which ignored the turbulent momentum
flux, is no longer valid. Instead, we must focus on the effect of the turbulence on the ZFs.
We find that the turbulence in the shear zones has a restoring effect on the zonal staircase
in the Dimits regime, whereas beyond the Dimits threshold, it inhibits staircase formation.

9The radial group velocity ∂ωk/∂kx is proportional to kxky because ωk ∝ ky and ωk depends on kx only through k2.
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(a)

(b)

(c)

FIGURE 18. (a) A close-up view (from figure 9b) of the temperature and electrostatic-potential
perturbations of a hot ferdinon in a region of negative zonal shear, S = ∂2

x ϕ < 0. The arrows
represent the local nonzonal E × B velocity u′ = ẑ × ∇ϕ′ (in arbitrary units). (b) A hot ferdinon
in a region of positive zonal shear, S = ∂2

x ϕ > 0. (c) A cold ferdinon in a region of positive zonal
shear, S = ∂2

x ϕ > 0.
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4. Resilience of the zonal state and the Dimits threshold
4.1. Turbulent momentum flux

In order to investigate the way in which ZF profiles are formed and maintained during
turbulent periods, let us ask the following question: does ITG turbulence in the shear
zones (produced in bursts) have a definite effect on the ZFs, and is it to oppose or to feed
them? We shall find that this sheared turbulence enhances the ZFs in the Dimits regime
and destroys them beyond the Dimits transition.

The ZF evolution (3.3) is
∂tϕ + Πt + Πd = 0. (4.1)

In § 3.1.2, we discussed the effect of the diffusive momentum flux Πd, namely, the
viscous decay of the ZFs. For the rest of this section, we focus on the effects of turbulence
by examining the turbulent momentum flux Πt.

It is evident from (4.1) that ZF saturation requires

〈Πt(t, x) + Πd(t, x)〉�t ≈ 0 (4.2)

to be satisfied at every radial location x, where 〈 f (t)〉�t ≡ (1/�t)
∫

�t dt f (t) is a time
average in the saturated state over a time �t longer than the typical evolution time of
the ZF (e.g. longer than the duration of turbulent bursts if the saturated state is bursty).
Recall that Πd ≈ −aχ∂2

x ϕ = −aχS in the shear zones (see § 3.1.2). Therefore, within a
shear zone with nearly constant (in time and in space) zonal shear, (4.2) tells us that the
time-averaged turbulent momentum flux in that shear zone must have a definite value,10

determined by the local zonal shear. Thus, in the saturated state, Πt will be correlated
with S.

To quantify this correlation, let us multiply both sides of (4.1) by S = ∂2
x ϕ and integrate

across the radial extent of the domain. We find∫ Lx

0
dx

(
∂2

x ϕ
)
∂tϕ +

∫ Lx

0
dx ΠtS +

∫ Lx

0
dx ΠdS = 0. (4.3)

Since Πd = −χ∂2
x (aϕ − bT) = −aχS + bχ∂2

x T , we have∫ Lx

0
dx ΠdS = −aχ

∫ Lx

0
dx S2 + bχ

∫ Lx

0
dx S∂2

x T ≈ −aχ

∫ Lx

0
dx S2, (4.4)

where we have assumed that the second term is negligible because the main contribution
to S comes from the shear zones, where ∂2

x T ≈ 0 (see also the discussion leading to 3.5).
Therefore, after integrating by parts the first term in (4.3) and time averaging the resulting
equation, we find〈∫ Lx

0
dx

(
ΠtS − aχS2)〉

�t

= −
〈

1
2∂t

∫ Lx

0
dx (∂xϕ)2

〉
�t

≈ 0. (4.5)

This gives a prediction for the effective ‘turbulent viscosity’ in the shear zones:

νt ≡ −

〈∫ Lx

0 dx ΠtS
〉
�t〈∫ Lx

0 dx S2
〉
�t

≈ −aχ. (4.6)

Relation (4.6) is, of course, corroborated by numerical simulations (see figure 19).

10Also, the spatial average over a shear zone of the turbulent momentum flux must be nonzero. This is not in
contradiction with the argument in § 3.1.2 that the spatial average over the entire box is zero, i.e. Π = 0, because a
definite uniform zonal shear breaks the symmetry (3.4) locally within each shear zone.
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FIGURE 19. Comparison of estimated turbulent viscosity νt and the collisional viscosity aχ
for the simulations from figure 6. We see that νt ≈ −aχ .

4.2. Sign reversal of the turbulent momentum flux at the Dimits threshold
An important consequence of (4.6) is that, in a shear zone, the sign of the turbulent
momentum flux must coincide with the sign of the zonal shear. Therefore, if, for certain
parameters, sheared turbulence has a momentum flux with a sign opposing that of the local
shear, saturation cannot be achieved. We shall see that this is exactly what happens beyond
the Dimits threshold.

Let us investigate how turbulence responds to an imposed static zonal profile. We solve
(2.17) and (2.18) numerically with an imposed static triangular ZF pattern (i.e. we do
not evolve the ZFs at all), in a box of size Lx = Ly = 100 and 169 × 169 Fourier modes,
for a range of parameters around the Dimits transition. The chosen ZF pattern is shown
in figure 20(a) and is adjusted for every simulation so that the value of the zonal shear
in the shear zones matches the largest ITG growth rate for that simulation. The chosen
radial scale of the ZF (= 100) is inspired by the typical ZF scale that we observe in the
low-collisionality regime, and is held fixed as we vary χ and κT . Then we calculate the
effective turbulent viscosity νt associated with the turbulent momentum flux.

As figure 20(b) shows, we find a negative turbulent viscosity νt (and, thus, a positive
correlation between local zonal shear and turbulent momentum flux) in the Dimits regime
and a positive νt beyond it (thus, a negative correlation). Let us denote by κ static

T the
temperature gradient at which νt reverses its sign. The designation ‘static’ reflects the
fact that this is a numerical result for ITG turbulence with an artificially imposed static
ZF profile. We find that the value of κ static

T is insensitive to the exact shape of the ZF
profile, and, most importantly, it nearly perfectly coincides with the Dimits threshold,
i.e. κ static

T ≈ κc
T .

Thus, in the Dimits regime, shear zones are resilient because, when the zonal shear there
decays due to viscosity and turbulence is thus unleashed, this turbulence acts to reinforce
the ZFs and the zonal shear in the shear zones is restored to its turbulence-suppressing
level. Beyond the Dimits regime, the zonal staircase cannot be sustained because both
turbulence and collisional viscosity act to flatten out the ZFs.

4.3. Reynolds stress and diamagnetic stress
Let us analyse what causes the turbulent momentum flux Πt to reverse its sign at the Dimits
transition. We split Πt = Πϕ + ΠT and define

Πϕ ≡ −(∂xϕ)(∂yϕ) = uyux, ΠT ≡ −(∂xϕ)(∂yT) = uywx, (4.7a,b)
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(a)

(b)

FIGURE 20. (a) The artificial triangular zonal pattern used to generate panel (b). The zonal
shear in the shear zones is chosen to be equal in absolute value to the largest ITG growth rate
(represented by the dashed green line). (b) The effective turbulent viscosity νt, as defined by
(4.6), for the static triangular ZF profile given in panel (a) (coloured data points). The black line
represents the numerically established Dimits threshold.

where u = (−∂yϕ, ∂xϕ) is the E × B flow and w = (−∂yT, ∂xT) is the diamagnetic flow.
Here Πϕ is the radial flux of the poloidal momentum due to the Reynolds stress of the
E × B flow and the ‘diamagnetic stress’ ΠT is a contribution to the momentum flux that
physically arises due to the advection of the poloidal diamagnetic flow wy = ∂xT by the
radial E × B flow ux = −∂yϕ.11 To see this, let us take the zonal average of (2.18) and
differentiate once with respect to x, to obtain an equation for the zonal diamagnetic flow:

∂twy + ∂xuxwy − ∂xΠT = χ∂2
x wy. (4.8)

The evolution of the zonal poloidal E × B flow is described by (3.2), which can be recast
as

∂tuy + ∂xuxuy + ∂xΠT = −∂xΠd. (4.9)

11Similar terms in the momentum flux play an important role in the GK theory of momentum transport (Parra &
Catto 2009, 2010; Abiteboul 2012; Calvo & Parra 2015).
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Added together, (4.8) and (4.9) describe the advection of the total poloidal flow (E × B +
diamagnetic), vy ≡ uy + wy, by the radial E × B flow:

∂tvy + ∂xuxvy = dissipative terms. (4.10)

This makes physical sense because the diamagnetic flow is not a real flow and thus cannot
advect anything.

The numerical solutions of (2.17) and (2.18) reveal that Πϕ and ΠT are in competition:
on average, Πϕ has the same sign as the zonal shear S = ∂2

x ϕ, while ΠT has the opposite
sign. This is evident in figure 21. Equation (4.1) then tells us that Πϕ feeds the ZFs by
increasing the zonal potential ϕ in the shear zones of negative zonal shear (where ϕ is
concave) and decreasing it in the shear zones of positive zonal shear (where ϕ is convex),
whereas ΠT relaxes the ZFs by opposing Πϕ . Their combined effect either steepens or
relaxes the ZF velocity uy = ∂xϕ at the turning points ∂2

x ϕ = 0, depending on which stress
is larger. Figure 22 is an illustration of this. This competition is crucial for the ability of
the ZF to reconstitute itself after a turbulent burst and thus sets the threshold for the Dimits
regime.

In order to assess what decides the outcome of this competition (i.e. the relative size
of Πϕ and ΠT), let us consider how zonal shear affects ITG turbulence. For this purpose,
consider a shear zone of radial extent d with a constant zonal shear S = ∂2

x ϕ throughout
it. We can then perform the usual shearing-box change of variables (t, x, y) �→ (t̃, x̃, ỹ),
where

t̃ = t, x̃ = x, ỹ = y − Stx. (4.11a–c)

This coordinate transformation eliminates the spatially inhomogeneous zonal-advection
terms (∂xϕ)∂y = Sx∂y in (2.17) and (2.18). Consider a Fourier mode ϕ, T ∝ exp(ik̃xx̃ + ik̃yỹ)
in this shearing frame. In the laboratory frame (t, x, y), this mode has the form
ϕ, T ∝ exp(ikxx + ikyy), where

kx = k̃x − Stk̃y, ky = k̃y. (4.12a,b)

Thus, the ZF shear introduces an effective drift of the laboratory-frame radial
wavenumber.12 The direction of this drift is given by the sign of S: S > 0 gives rise to
an anticorrelation of kx and ky, i.e. kxky < 0, whereas for S < 0, kxky > 0. Integrating the
effect of Πϕ over the sheared region, we obtain

1
d

∫
dx Πϕ = − 1

dLy

∫
dx dy (∂xϕ)

(
∂yϕ

) = −
∑

k

kxky|ϕk|2. (4.13)

Therefore, on average, Πϕ has the same sign as S, and, thus, feeds the ZFs that generate
the shear zones.13

We can write a similar expression for the diamagnetic stress:

1
d

∫
dx ΠT = −

∑
k

kxky|ϕk|2Re
Tk

ϕk
. (4.14)

12It is certainly true that an equilibrium shear would have such an effect on the turbulence. However, this is not
guaranteed for ZFs. Their influence on the turbulence depends crucially on the modified electron response (2.4). This is
a distinguishing feature of ion-scale physics that does not exist in, for example, the electron-scale version of the model
presented here.

13This is a well-known result in the context of Rossby-wave tubulence (see Vallis 2017, chapter 15.1.2).
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(a)

(b)

FIGURE 21. (a) Time-averaged momentum fluxes Πϕ , ΠT and Πt = Πϕ + ΠT for saturated
ITG turbulence over a fixed zonal background. Note the correlation between the signs of the
various fluxes and the zonal shear S: the sign of Πt coincides with that of Πϕ and S and opposes
the sign of ΠT . This reflects that the temperature gradient is lower than the Dimits threshold,
κT = 0.36 < κc

T ≈ 1. The ZF profile used here was extracted from SimH at t = 10, but reduced
by a factor of 0.8 in order to allow ITG turbulence to develop in the shear zones. (b) Same as
panel (a), but with κT = 1.21. The sign of Πt now opposes the sign of Πϕ and S and coincides
with the sign of ΠT . This reflects that κT = 1.21 > κc

T ≈ 1. The extracted ZF is augmented by a
factor of 2 to account for the increased ITG growth rate (due to the larger κT ). This is necessary
for the turbulence to saturate at numerically feasible amplitudes. Note that saturation is possible
only because we have fixed the ZF profile. If the ZF is left to evolve according to (3.2), the
poloidal momentum generated by the nonzonal perturbations flattens it and the system fails to
reach a finite-amplitude saturated state (see § 4.5).

Then the total turbulent momentum flux integrated over a shear region is

1
d

∫
dx Πt = −

∑
k

kxky|ϕk|2
(

1 + Re
Tk

ϕk

)
. (4.15)
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FIGURE 22. An illustration of the enhancing and suppressing effects of Πϕ and ΠT on the ZF.
The black curve shows the ϕ(x) profile taken from SimH at t = 10. The ZF extrema are the
locations where S = ∂2

x ϕ = 0 (marked by dashed lines).

Recall that we already encountered the quantity Re(Tk/ϕk) when dealing with the
secondary instability in § 2.8. There we found that Re(Tk/ϕk) < 0 for all linearly unstable
modes. Thus, linear theory predicts that ΠT and Πϕ are anticorrelated due to the negative
sign of Re(Tk/ϕk). Now let us perform a more detailed analysis of the linear modes and
attempt to construct a model for the Dimits threshold based on it.

4.4. Dimits threshold from linear physics
Using our knowledge of ITG perturbations in a region of uniform ZF shear, and of the
turbulent momentum flux produced by them, we can make a heuristic linear-physics-based
estimate for the Dimits threshold κc

T . In view of (4.15), it is given by the temperature
gradient at which the ‘relevant’ ITG modes have Re(Tk/ϕk) = −1. By ‘relevant’ we mean
those ITG modes that dominate the turbulence in the shear zones. It is tempting to assume
that these modes would be the most unstable modes in the system. This, however, cannot
be the case because the most unstable modes are the radial streamers with kx = 0, but
the zonal shear that we find is comparable in magnitude to the largest ITG growth rate
(S ∼ γmax), and, therefore, is bound to break these streamers. Following the discussion in
§ 4.3, we may assume that the typical ITG modes in sheared turbulence satisfy kx ∼ αky,
where α ∼ Sτnl characterises how tilted the mode is, τnl being the nonlinear correlation
time of the turbulence in the shear zones. If τ−1

nl ∼ γmax ∼ S, then α ∼ 1.
Thus, we assume that the relevant modes are tilted with kx = αky, where α ∼ 1 is an

unknown tilt parameter that depends on the structure of the turbulence. We then look for
the temperature gradient κT at which the fastest-growing ITG mode with kx = αky satisfies
Re(Tk/ϕk) = −1. This yields a prediction for the Dimits threshold in the (κT, χ) plane
that we refer to as the ‘fastest-mode approximation’. Note that there is no a priori reason
to assume that α is itself not a function of κT .

4.4.1. High-collisionality limit
We can take the χ → ∞ limit of the fastest-mode approximation analytically. We

formally order χ ∼ κT , as suggested by figure 23. We then use the dispersion relation
(2.20) to find the growth rate γk and real frequency ωk of the fastest mode with kx = αky.
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In § 2.6.2, we showed that a mode of wavenumber k is unstable if and only if

κTk2
y > aχ 2k6 = aχ 2(1 + α2)3k6

y , (4.16)

so all unstable modes with kx = αky, where α ∼ O (1), satisfy

k4
y <

κT

aχ 2(1 + α2)3
∼ O

(
κ−1

T

)
. (4.17)

Similarly, using the results in § 2.6.1 for the FLR bounds on the region of unstable
wavenumbers, we find k4

y ∼ O
(
κ−1

T

)
in the limit κT → ∞. Thus, both mechanisms that

bound the region of instability (and hence restrict the largest ITG growth rate) lead
to the same scaling for the unstable wavenumbers. Therefore, the wavenumber of the
most unstable mode must also satisfy ky ∼ κ

−1/4
T . Applying the ordering χ ∼ κT � 1 and

kx = αky ∼ κ
−1/4
T to (2.28a–e), we find

A ∼ O
(
κ

1/2
T

)
, B ∼ O (1) , C ∼ O

(
κ

1/4
T

)
, f ∼ O (1) , g ∼ O (1) . (4.18a–e)

The unstable solution of (2.27) is

γk − iωk = −A − B + iC + √
(A − B + iC)2 + 4fAB − 4igAC

2
. (4.19)

After expanding it using (4.18a–e), we find

γk ∼ O (1) � ωk ∼ O
(
κ

1/4
T

)
� χk2 ∼ O

(√
κT
)
, (4.20)

ωk = −(1 − g)C + O
(
κ

−1/4
T

)
= −κT(1 − b)(1 + α2)k3

y + O
(
κ

−1/4
T

)
. (4.21)

Therefore, (2.58) gives

Re
Tk

ϕk
= kyκTωk

|γk − iωk + χk2|2 ≈ kyκTωk

χ 2k4
≈ − 1 − b

1 + α2

κ2
T

χ 2
. (4.22)

Thus, the large-temperature-gradient fastest-mode approximation of the Dimits threshold
is a straight line in the (κT, χ) plane, given by

κc
T ≈ χ

√
1 + α2

1 − b
, (4.23)

a posteriori confirming the ordering χ ∼ κT . The numerically determined Dimits
threshold is indeed close to a straight line. Fitting the slope of that line to (4.23) yields
α ≈ 3. Comparison of the prediction for the Dimits threshold for this value of α, as well
as α = 0, which corresponds to the threshold for the secondary instability of a primary
streamer (as discussed in § 2.8), can be found in figure 23. The convergence is slow
(∝ κ

−1/4
T ), hence the sizeable discrepancy for the values of κT shown there, but we consider

the asymptotic result to be sound.
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FIGURE 23. Comparison of numerical data with the analytical estimate for the threshold of
the Dimits regime (§ 4.4). The black points represent the numerically observed κc

T . The other
two curves correspond to the parameters for which the fastest-growing mode with kx = αky
satisfies Re(Tk/ϕk) = −1. The case α = 0 corresponds to the threshold for the suppression of
the secondary instability of the fastest streamer (kx = 0) mode (see § 2.8), and the curve with
α = 3 asymptotes to the numerically determined slope of the Dimits threshold as κT → ∞. Its
asymptote is represented here by the dotted line and is given by (4.23).

4.4.2. Low-collisionality limit
Using a calculation that is nearly identical to the one in § 2.8.2, we can analytically

take the limit χ → 0 of the fastest-mode approximation using the collisionless dispersion
relation (2.21) and inserting it into (2.54). We obtain that κc

T → 1 as χ → 0 for the fastest
mode with kx = αky, regardless of the value of α. This is a weakness of our ‘fastest-mode
approximation’ because the numerical data suggest instead that κc

T → 0 as χ → 0. Thus,
the assumptions that we made above about the relevance of the fastest-growing modes
appear to be inadequate at low collisionality.

To summarise, the assumption that the momentum flux and Re(Tk/ϕk) are dominated
by the most unstable mode with some tilt given by α = kx/ky allows us to predict the
Dimits threshold at high collisionality, but fails at low collisionality. This partial success
is likely due to the fact that Re(Tk/ϕk) for the most unstable mode is independent of k
for κT ∼ χ � 1 (see 4.22). So, not only the most unstable, but in fact all modes in its
vicinity will have the same value of Re(Tk/ϕk). On the other hand, the failure of these
assumptions at low collisionality suggests that we cannot use linear theory to predict the
threshold there, but must rather focus on the nonlinear structure of the ITG turbulence
seeded by ferdinons during bursts. This will be further discussed in § 5.

4.5. Beyond the Dimits regime
Beyond the Dimits threshold (κT > κc

T), our two-dimensional system fails to reach
saturation on a scale smaller than the domain size – perturbations grow exponentially
and the box-sized streamer (kx = 0, ky = 2π/Ly) eventually dominates the spectrum.
Figures 24 and 25 show that the large-scale, coherent ZFs that comprise the zonal staircase
are quickly destroyed and never reappear. This is consistent with the illustration in figure 22
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(a)

(b)

FIGURE 24. Time evolution of the heat flux (a) and ZF velocity uy (b) beyond the Dimits
regime. The ZF amplitude in the panel (b) normalised to a maximum of 1 at each time. The
initial conditions are the same as those for SimH, but with an augmented temperature gradient
κT = 1.21 > κc

T ≈ 1 and a lower resolution of 337 × 167 Fourier modes due to the numerical
cost of simulating the blow-up regime. The ZFs are quickly destroyed and large-scale ZFs
never reappear, while the box-averaged heat flux Q grows exponentially. This state is eventually
dominated by a streamer with a poloidal scale equal to that of the integration domain (see
figure 25).

and the discussion in § 4.3. For κT > κc
T , if a shear zone of coherent zonal shear (like the

ones we observe in the Dimits regime) were formed, the turbulent stress Πt would flatten
out the ZF profile. Any coherent zonal shear is thus the harbinger of its own demise
due to the momentum flux of the tilted turbulent eddies. The nonzonal perturbations
grow exponentially, and so do the ZFs, but the latter are now dominated by small-scale
time-incoherent zonal modes that are unable to quench the instability.

The lack of saturation beyond the Dimits regime in two dimensions is not surprising.
Gyrokinetic simulations have shown that, beyond the Dimits regime in saturated
three-dimensional ITG turbulence, the ITG frequency at the injection (‘outer’) scale of
the perpendicular plane is balanced by the parallel propagation time – the turbulence is in
‘critical balance’ (Barnes et al. 2011):

ωo ∼ v‖k‖, (4.24)

where v‖ is some appropriate speed of parallel propagation (e.g. the ion thermal speed
vti) and ωo ∝ ky is the ITG frequency at the outer scale, proportional to ky by (2.20). In a
tokamak, the smallest allowed value of k‖ is k‖ ∼ L−1

‖ , where L‖ is the parallel connection
length of the device. Thus, a parallel length scale is enforced by the magnetic geometry.
The poloidal outer scale (ky) then follows by (4.24) and the radial outer scale is enforced
by zonal shearing (kx ∼ ky). The two-dimensional approximation can be obtained as the
k‖ → 0 limit of the three-dimensional system. In this case, (4.24) implies that ky → 0,
in agreement with the blow up dominated by the box-sized streamer that we observe
beyond the Dimits threshold. Thus, the two-dimensional approximation is fundamentally
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FIGURE 25. Snapshots of temperature perturbations in the blow-up state beyond the Dimits
threshold (supplementary movies, entitled as movie_fig25.mp4). The amplitudes are normalised
to a maximum of 1 at each time. The initial conditions are the same as those for SimH, but with
an augmented temperature gradient κT = 1.21 > κc

T ≈ 1 and a lower resolution of 337 × 167
Fourier modes due to the numerical cost of simulating the blow-up regime.

inadequate as a description of fully developed ITG turbulence.14 However, we have shown
that ZF-mediated saturation and the Dimits transition are captured by a two-dimensional
model. Of course, it is an outstanding task (left for future work) to confirm that the physics
of the two-dimensional Dimits transition remains (qualitatively) valid in three dimensions.

5. Discussion

We have found that the saturation of two-dimensional ITG turbulence in Z-pinch
geometry is mediated by strong quasi-static ZFs with patchwise-constant zonal shear
(§ 3). There is a clear transition between a ZF-dominated Dimits regime and a strongly
turbulent state, which in two dimensions fails to saturate at a finite amplitude (§ 4.5).
The mechanism that sustains the ZFs in the Dimits regime (κT < κc

T) and undermines
them beyond it (κT > κc

T) is linked to the turbulent momentum flux of ITG modes in the
presence of a coherent zonal shear. Namely, in the Dimits regime, the response of ITG
turbulence to strong (comparable to the ITG-instability growth rate), coherent zonal shear
can be described in terms of a negative turbulent viscosity that reinforces the ZFs. This
turbulent viscosity vanishes at the Dimits threshold and becomes positive beyond it, thus
impeding any strong zonal shear that could suppress turbulence (§ 4.2). Viewed this way,
the Dimits transition is caused by a change in the properties of sheared ITG turbulence. In
the model considered here, the turbulent momentum flux consists of the usual Reynolds
stress, familiar from hydrodynamics, and a diamagnetic contribution. We find that the
former acts to reinforce the ZFs, while the latter opposes the ZFs (§ 4.3).

In general, therefore, determining whether a set of equilibrium parameters lies within
the Dimits regime requires one to make a statement about the combined momentum flux
of all turbulent modes. In § 4.4, we employed the heuristic assumption that the momentum
flux is determined predominantly by the most unstable modes with a finite tilt (kx = αky).
We found that α ≈ 3 models reasonably well the Dimits threshold for large temperature

14Also because of the presence of two-dimensional invariants (see § 2.7), which can lead to an inverse cascade and
energy pile-up at the largest available (box) scale, as they do in two-dimensional hydrodynamic turbulence (Frisch 1995).
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gradients and collisionalities.15 At low collisionalities, such simple considerations do not
produce quantitatively satisfactory results.

The mechanism for the Dimits transition described above is not directly tied to the
onset of the radially localised tertiary instability found at the extrema of the ZF (§ 2.9
and appendix C). It is more appropriate to view it as the quenching of some nonlinear
version of the secondary instability (§ 2.8). This appears to be in contrast with the
transition seen in the Hasegawa–Wakatani equations, where the tertiary instability was
argued to determine the threshold for the strong-turbulence regime (Zhu et al. 2020b). The
Hasegawa–Wakatani system does not contain the diamagnetic stress discussed in § 4.3 or,
indeed, any other form of poloidal momentum flux apart from the Reynolds stress. Thus,
by construction, it lacks the effects discussed in this paper. However, it is worth mentioning
that Zhu et al. (2020b) have observed turbulent bursts triggered by travelling structures in
the Hasegawa–Wakatani system. Due to the lack of diamagnetic stress, these turbulent
bursts are bound to restore the ZFs.

As concluded in § 4.4, an accurate prediction of the Dimits threshold requires a detailed
understanding of the properties of sheared ITG turbulence. The nature of this turbulence
is likely to be closely related to the properties of the localised structures (ferdinons) that
are seeded by the tertiary-unstable regions around the ZF maxima (see § 3.2.2) and then
drift through the shear zones (see § 3.3). If the averaged properties of sheared turbulence
correspond to those of a collection of (independent) ferdinons, we might be able to use
the momentum flux of a ferdinon in order to make predictions about sheared turbulence.
Developing an analytical approximation of a simple ferdinon is therefore an important
outstanding task for future research.

The insight into the significance of the turbulent momentum flux of sheared turbulence
provides us with a natural starting point for the investigation of the Dimits threshold in
three-dimensional GK. To reiterate, we have shown that, within the Dimits regime, the
time-averaged poloidal momentum flux of turbulence sheared by a region of constant zonal
shear acts to reinforce the ZFs and, thus, zonal shear. On the other hand, beyond the Dimits
regime, the overall sign of the momentum flux reverses and the ZFs are destroyed by the
turbulence. The validity of this statement is a well-posed question that can be answered
by three-dimensional GK numerical simulations, regardless of the number of parameters
(which, in a realistic scenario, greatly outnumbers two).
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Appendix A. Derivation of the model equations

A.1. Gyrokinetic equation
The derivation of our fluid model is similar to the one by Newton, Cowley &
Loureiro (2010). We start from the two-dimensional ion GK equation in a Z-pinch-like
equilibrium, as discussed in § 2.1, omitting the parallel streaming term (for a review
of GK, see Abel et al. 2013). The ion distribution function is fi = Fi + δfi, where Fi =
ni/(π

3/2v3
ti) exp(−v2/v2

ti) is the equilibrium ion distribution function and

δfi = −Zeφ
Ti

Fi + h
(
t, R, v‖, v⊥

)
. (A 1)

The gyrocentre distribution h satisfies

∂

∂t

(
h − ZeFi

Ti
〈φ〉R

)
+ VD · ∂h

∂R
+ 〈VE〉R ·

[
∂h
∂R

− x̂
(

v2

v2
ti

− 3
2

)
Fi

LT

]
= 〈Cl[h]〉R. (A 2)

Here Ti = miv
2
ti/2 and L−1

T = −∂x ln Ti are the ion equilibrium temperature and
temperature gradient, respectively. The ion mass is mi, the ion charge is Ze and Ωi =
ZeB/mic is the ion gyrofrequency. The equilibrium magnetic field is B and 〈·〉r and
〈·〉R denote, respectively, the gyroaverages at fixed position and fixed ion guiding centre
R = (X, Y, Z) = r − b̂ × v/Ωi, where b̂ = B/B is the unit vector parallel to the magnetic
field. These gyroaverages are defined as

〈 f (R)〉r ≡ 〈 f (r − ρ(θ))〉 =
∫ 2π

0

dθ

2π
f (r − ρ(θ)), (A 3)

〈 f (r)〉R ≡ 〈 f (R + ρ(θ))〉 =
∫ 2π

0

dθ

2π
f (R + ρ(θ)), (A 4)

where 〈·〉 denotes the average with respect to the gyroangle θ , ρ(θ) ≡ b × v/Ωi,
v = v‖b̂ + v⊥(cos θ ŷ − sin θ x̂) and the unit vectors {x̂, ŷ, b̂} form a right-handed
orthonormal basis, as shown in figure 1. We will require the following properties of the
gyroaverage:

〈ρ〉 = 0, 〈ρρ〉 = 1
2

v2
⊥

v2
ti
ρ2

i 1⊥, (A 5a,b)

where 1⊥ is the identity matrix in the (x, y) plane. Using (A 5a,b) and Taylor expanding
(A 3) and (A 4), we obtain

〈h〉r =
[

1 + 1
4

v2
⊥

v2
ti
ρ2

i ∇2
⊥ + O

(
k4

⊥ρ4
i

)]
h(r), (A 6)

〈ϕ〉R =
[

1 + 1
4

v2
⊥

v2
ti
ρ2

i ∇2
⊥ + O

(
k4

⊥ρ4
i

)]
ϕ(R). (A 7)

https://doi.org/10.1017/S0022377820000938 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000938
https://doi.org/10.1017/S0022377820000938


44 P. G. Ivanov and others

The velocities VD and 〈VE〉R in (A 2) are the magnetic and (gyroaveraged) E × B drifts,
respectively, given by

VD = 1
Ω

[
v2

‖ b̂ × (b.∇b) + v2
⊥
2

b × ∇ ln B
]

= 1
ΩiB

(
v2

‖ + v2
⊥
2

)
b̂ × ∇B, (A 8)

〈VE〉R = c
B

b̂ × ∂ 〈φ〉R

∂R
. (A 9)

The second equality in (A 8) is obtained by assuming that the magnetic field is created
by currents external to the spatial domain, so ∇ × B = 0. For the Z-pinch geometry and
coordinates discussed in § 2 and shown in figure 1, we obtain

VD = −ρivti

LB

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)
ŷ. (A 10)

The term on the right-hand side of (A 2) is the gyroaveraged linearised Landau collision
operator. To lowest order in the mass-ratio expansion (me/mi � 1), only ion–ion collisions
contribute and the linearised operator is given by

Cl[h] = νiv
3
ti

ni

∂

∂v

∣∣∣∣
r

·
{

Fi(v)

∫
d3v′Fi(v

′)U ·
[

∂

∂v

∣∣∣∣
r

h(v)

Fi(v)
− ∂

∂v′

∣∣∣∣
r

h(v′)
Fi(v

′)

]}
, (A 11)

where U = (u2I − uu)/u3, u = v − v′ and

νi = 2πZ4e4ni ln Λi

m2
i v

3
ti

(A 12)

is the ion–ion collision frequency, where ln Λi is the Coulomb logarithm (Helander &
Sigmar 2002).

The electrostatic GK (A 2) is closed by the quasi-neutrality condition δne = Zδni and
the modified adiabatic electron response (Abel & Cowley 2013)

δfe = eφ′

Te
Fe. (A 13)

Therefore,
1
ni

∫
d3v 〈h〉r = Ze

Ti
φ + e

Te
φ′. (A 14)

Putting all of this together, we arrive at the two-dimensional electrostatic GK system in
our Z-pinch equilibrium:

∂

∂t
(h − 〈ϕ〉R Fi) + ρivti

2LT

(
v2

v2
ti

− 3
2

)
Fi

∂ 〈ϕ〉R

∂Y
− ρivti

LB

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)
∂h
∂Y

+ 1
2
ρivti {〈ϕ〉R , h} = 〈Cl[h]〉R , (A 15)

1
ni

∫
d3v 〈h〉r = ϕ + τϕ′, (A 16)

where the normalised (to ion units) electric potential is ϕ = Zeφ/Ti and the temperature
ratio is τ = Ti/ZTe.

https://doi.org/10.1017/S0022377820000938 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000938


Dimits regime of curvature-driven ITG turbulence 45

A.2. Lowest-order solution
We now apply the high-collisionality, long-wavelength, cold-ion ordering (2.8). In this
expansion, we write h = h(0) + h(1), where O

(
h(1)

) ∼ O
(
k2

⊥ρ2
i h(0)

)
. Then, to lowest order,

(A 15) gives Cl[h(0)] = 0, whose solution is a perturbed Maxwellian

h(0)(R) =
[
δN(R)

ni
+ δT(R)

Ti

(
v2

v2
ti

− 3
2

)]
Fi. (A 17)

Here the abstract quantities δN(R) and δT(R) are taken to be functions of the guiding
centre R. Substituting the expansion for h into the quasi-neutrality (A 16) and using (A 6),
we obtain

1
ni

∫
d3v

(
1 + 1

4
v2

⊥
v2

ti
ρ2

i ∇2
⊥

)[
δN
ni

+ δT
Ti

(
v2

v2
ti

− 3
2

)]
Fi = ϕ + τϕ′, (A 18)

where we have absorbed the density and temperature moments of h into h(0) by imposing∫
d3v h(1) =

∫
d3v v2h(1) = 0. (A 19)

Formally, in writing down (A 18), we have only assumed that the density moment of h(1)

vanishes. We will use the condition that h(1) has a zero temperature moment in appendix B.
Under the ordering τ ∼ k2

⊥ρ2
i � 1, (A 18) yields

δN
ni

= ϕ + τϕ′ − 1
4
ρ2

i ∇2
⊥

(
ϕ + δT

Ti

)
+ O

(
k4

⊥ρ4
i ϕ
)
. (A 20)

We now proceed to take density and temperature moments of the GK equation (A 15) at
fixed particle position r and retain only the lowest-order terms in the ordering (2.8). We
will find that the density moment of (A 15) vanishes to lowest order, and hence we are
required to expand that moment to order O

(
k2

⊥ρ2
i h
)
. We shall only require terms up to

O (h) for the temperature moment.

A.3. Density moment
Let us consider one-by-one the density moments at fixed particle position,
(1/ni)

∫
d3v 〈·〉r, of the terms in (A 15). The first term is

1
ni

∫
d3v 〈h − 〈ϕ〉R Fi〉r = ϕ + τϕ′ −

(
1 + 1

2
ρ2

i ∇2
⊥

)
ϕ = τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ, (A 21)

where we have used quasi-neutrality (A 16) and the lowest-nontrivial-order expressions
for the gyroaverages (A 6) and (A 7).

The next term is

1
ni

∫
d3v

ρivti

2LT

(
v2

v2
ti

− 3
2

)
Fi

〈
∂ 〈ϕ〉R

∂Y

〉
r

≈ 1
ni

∫
d3v

ρivti

2LT

(
v2

v2
ti

− 3
2

)
Fi

(
1 + 1

2
v2

⊥
v2

ti
ρ2

i ∇2
⊥

)
∂ϕ

∂y

= ρivti

2LT

1
2
ρ2

i ∇2
⊥

∂ϕ

∂y
. (A 22)
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To lowest order in k2
⊥ρ2

i � 1, the magnetic-drift term gives

1
ni

∫
d3v

ρivti

LB

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)〈
∂h(R)

∂Y

〉
r

≈ 1
ni

∫
d3v

ρivti

LB

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)
∂h(0)(r)

∂y

= 1
ni

∫
d3v

ρivti

LB

2
3

v2

v2
ti

∂h(0)(r)
∂y

= ρivti

LB

∂

∂y

(
ϕ + δT

Ti

)
, (A 23)

where we have used ∫
dv v2

‖h(0) =
∫

dv
v2

⊥
2

h(0) =
∫

dv
v2

3
h(0), (A 24)

which is a consequence of the isotropic form (A 17) of h(0).
The density moment of the nonlinear term in (A 15) is

1
ni

∫
d3v 〈{〈ϕ〉R (R), h(R)}〉r

≈ 1
ni

∫
d3v

〈{
ϕ(R) + 1

4
v2

⊥
v2

ti
ρ2

i ∇2
⊥ϕ(R), h(R)

}〉
r

≈ 1
ni

∫
d3v

〈{
ϕ(r) − ρ · ∇ϕ(r) + 1

2
ρρ : ∇∇ϕ(r) + 1

4
v2

⊥
v2

ti
ρ2

i ∇2
⊥ϕ(r), h(r − ρ)

}〉
r

= 1
ni

∫
d3v

〈
{ϕ(r), h(r − ρ)} + ρρ : {∇ϕ(r),∇h(r)}

+1
2
ρρ : {∇∇ϕ(r), h(r)} + 1

4
v2

⊥
v2

ti

{
ρ2

i ∇2
⊥ϕ(r), h(r)

}〉
r

= 1
ni

∫
d3v

[
{ϕ(r), 〈h〉r (r)} + 〈ρρ〉r : {∇ϕ(r),∇h(r)}

+1
2

〈ρρ〉r : {∇∇ϕ(r), h(r)} + 1
4

v2
⊥

v2
ti

{
ρ2

i ∇2
⊥ϕ(r), h(r)

}]

= 1
ni

∫
d3v

[
{ϕ(r), 〈h〉r (r)} + 1

2
v2

⊥
v2

ti
ρ2

i 1⊥ : {∇ϕ(r),∇h(r)}

+1
2

v2
⊥

v2
ti

{
ρ2

i ∇2
⊥ϕ(r), h(r)

}]
, (A 25)

where we have used (A 5a,b). Using the lowest-order contribution (A 17) to h and the fact
that {g, g} = 0 for any g, we find that (A 25) becomes

{
ϕ, τϕ′} + 1

2
ρ2

i 1⊥ :
{
∇ϕ,∇ δT

Ti

}
+ 1

2
ρ2

i

{
∇2

⊥ϕ, ϕ + δT
Ti

}

=
{
ϕ, τϕ′ − 1

2
ρ2

i ∇2
⊥ϕ

}
+ 1

2
ρ2

i ∇⊥ ·
{
∇⊥ϕ,

δT
Ti

}
. (A 26)
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Finally, collecting terms, dividing by τ and introducing the ion sound radius ρs =
ρi/

√
2τ , we obtain

∂

∂t

(
ϕ′ − ρ2

s ∇2
⊥ϕ

) − ρivti

τLB

∂

∂y

(
ϕ + δT

Ti

)
+ ρivti

2LT

∂

∂y

(
ρ2

s ∇2
⊥ϕ

)
+ 1

2
ρivti

({
ϕ, ϕ′ − ρ2

s ∇2
⊥ϕ

} + ρ2
s ∇⊥ ·

{
∇⊥ϕ,

δT
Ti

})
= 1

τni

∫
d3v 〈〈Cl[h]〉R〉r .

(A 27)

This will become (2.9) after we calculate the collisional term in appendix A.5.3.

A.4. Temperature moment
In a similar way, let us consider the temperature moments (1/ni)

∫
d3vv2/v2

ti 〈·〉r of the
terms in (A 15) to lowest order in k2

⊥ρ2
i � 1. The first term is

1
ni

∫
d3v

v2

v2
ti

〈h − 〈ϕ〉R Fi〉r ≈ 1
ni

∫
d3v

v2

v2
ti

(
h(0) − ϕFi

) = 3
2

δT
Ti

, (A 28)

where we have used (A 17).
The temperature-gradient term is

1
ni

∫
d3v

ρivti

2LT

v2

v2
ti

(
v2

v2
ti

− 3
2

)
Fi

〈
∂ 〈ϕ〉R

∂Y

〉
r

≈ 1
ni

∫
d3v

ρivti

2LT

v2

v2
ti

(
v2

v2
ti

− 3
2

)
Fi

∂ϕ

∂y
= 3

2
ρivti

2LT

∂ϕ

∂y
. (A 29)

The magnetic-drift term is

1
ni

∫
d3v

ρivti

LB

v2

v2
ti

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)〈
∂h(R)

∂Y

〉
r

≈ 1
ni

∫
d3v

ρivti

LB

v2

v2
ti

(
v2

‖
v2

ti
+ v2

⊥
2v2

ti

)
∂h(0)(r)

∂y

= 1
ni

∫
d3v

ρivti

LB

2
3

v4

v4
ti

∂h(0)(r)
∂y

= 5
2

ρivti

LB

∂

∂y

(
ϕ + 2

δT
Ti

)
, (A 30)

where we have used the isotropy of h(0) again. By the ordering (2.8), this term is an order
LT/LB ∼ O

(
k2

⊥ρ2
i

) � 1 smaller than the temperature-gradient term (A 29). Hence it will
not contribute to the final expression for the temperature moment of (A 15).

The nonlinear term is

1
ni

∫
d3v

v2

v2
ti

〈{〈ϕ〉R , h}〉r ≈ 1
ni

∫
d3v

v2

v2
ti

{
ϕ, h(0)

} = 3
2

{
ϕ,

δT
Ti

}
. (A 31)

Collecting terms, we find that the temperature moment of (A 15) is

∂

∂t
δT
Ti

+ ρivti

2LT

∂ϕ

∂y
+ 1

2
ρivti

{
ϕ,

δT
Ti

}
= 2

3ni

∫
d3v

v2

v2
ti

〈〈Cl[h]〉R〉r . (A 32)

This will become (2.10) after we calculate the collisional term in appendix A.5.2.
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A.5. Moments of the collision operator
A.5.1. Gyroaveraged collision operator

The gyroaveraged collision term in (A 2), expanded in a Fourier basis, h(R) =∑
k hk exp(ik · R), is

〈Cl [h]〉R =
∑

k

〈
Cl
[
hk exp(ik · R)

]〉
R =

∑
k

〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · r)

〉
R

=
∑

k

〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉
exp(ik · R), (A 33)

where all derivatives and integrals with respect to v in the collision operator are taken at
fixed r and the 〈·〉 operation is the gyroangle average (see A 3 and A 4). In order to obtain
collisional terms in (A 27) and (A 32), we expand the exponential factors exp(±ik · ρ) in
the small quantity k · ρ. Recall that (A 27) and (A 32) are contained at different orders
in the GK equation. We need (A 33) to order O(k2

⊥ρ2
i νih) for the temperature moment

and to order O(k4
⊥ρ4

i νih) for the density moment. We first consider the collisional term in
the temperature equation (A 32), which represents thermal diffusion, before turning to the
more involved calculation for the viscosity in (A 27).

A.5.2. Collisional thermal diffusion
The collisional term in the temperature equation (A 32) is

2
3ni

〈∑
k

exp(ik · R)

∫
d3v

v2

v2
ti

〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉〉
r

≈ 2
3ni

∑
k

exp(ik · r)
∫

d3v
v2

v2
ti

〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉
, (A 34)

where, to order O(k2
⊥ρ2

i νih), we can expand〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉 = Cl

[
h(1)

k

]
+
〈
ik · ρCl

[
(−ik · ρ) h(0)

k

]〉
− 1

2

〈
(k · ρ)2〉Cl

[
h(0)

k

]
+
〈
Cl

[
− 1

2 (k · ρ)2 h(0)

k

]〉
+ O(k4

⊥ρ4
i νih). (A 35)

Taking a temperature moment of (A 35) annihilates the first and fourth terms due to the
conservation-of-energy property of the collision operator (

∫
d3v v2 Cl[ f ] = 0 for any f )

and the third term vanishes because Cl[h(0)] = 0. Just as in Newton et al. (2010), after
performing the integration in (A 34), we find that the second term of (A 35) gives∫

d3v
v2

v2
ti

(ik · ρ) Cl[(−ik · ρ)h(0)

k ] = −3
2

niχk2
⊥

δTk

Ti
, (A 36)

where

χ ≡ 8
9

√
2
π

νiρ
2
i (A 37)

and the ion–ion collision frequency νi is defined in (A 12). Thus, (A 34) is

− χ
∑

k

exp(ik · r)k2
⊥

δTk

Ti
= χ∇2

⊥
δT(r)

Ti
. (A 38)

The right-hand side of (A 32) is (A 38); hence we arrive at the temperature equation (2.10).
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A.5.3. Collisional viscous damping
As we discussed before, under the ordering (2.8), the density moment of (A 15) is

obtained at an order higher in k2
⊥ρ2

i � 1 than the temperature moment. As a sanity check,
note that taking a density moment (

∫
d3v 〈·〉r) of (A 35) annihilates all terms: terms one

and four vanish because the collision operator conserves particle number (
∫

d3v Cl[ f ] = 0
for any f ), term two vanishes because of conservation of momentum (

∫
d3v vCl[ f ] = 0 for

any f ) and as before, term three is identically zero due to the form of h(0). We thus need to
expand (A 33) to order O

(
k4

⊥ρ4
i νih

)
.

The collisional term of the density moment in (A 27) is∑
k

∫
d3v

〈〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉
exp(ik · R)

〉
r

=
∑

k

∫
d3v J0

(
k⊥v⊥
Ω

) 〈
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ)

〉
exp(ik · r)

=
∑

k

∫
d3v J0

(
k⊥v⊥
Ω

)
Cl
[
hk exp(−ik · ρ)

]
exp(ik · ρ) exp(ik · r)

≡
∑

k

CDk exp(ik · r). (A 39)

Note that any term with an odd power of k · ρ is annihilated by gyroaveraging. Expanding
(A 39) to order O(k4

⊥ρ4
i νih), we find

CDk =
∫

d3v

{
−1

2
(k · ρ)2 Cl

[
−1

2
(k · ρ)2 h(0)

k

]

− 1
2

(k · ρ)2 Cl

[
h(1)

k

]
− 1

6
i (k · ρ)3 Cl

[
(−ik · ρ)h(0)

k

]
−k2

⊥v2
⊥

4Ω2

(
k · ρCl

[
k · ρh(0)

k

]
− 1

2
Cl

[
(k · ρ)2 h(0)

k

]
+ Cl

[
h(1)

k

])}
. (A 40)

Since the linearised collision operator is isotropic in velocity space and the GK distribution
h is independent of gyroangle, it follows that C[h(1)] is also independent of gyroangle.
Therefore, we can write∫

d3v
1
2

(k · ρ)2 Cl

[
h(1)

k

]
=
∫

d3v
1
2

〈
(k · ρ)2〉Cl

[
h(1)

k

]
=
∫

d3v
k2

⊥v2
⊥

4Ω2
Cl

[
h(1)

k

]
.

(A 41)
Substituting (A 41) into (A 40), we obtain

CDk =
∫

d3v

{
1
4

(k · ρ)2 Cl

[
(k · ρ)2 h(0)

k

]
− k2

⊥v2
⊥

2Ω2
Cl

[
h(1)

k

]
− 1

6
(k · ρ)3 Cl

[
k · ρh(0)

k

]

−k2
⊥v2

⊥
4Ω2

k · ρCl

[
k · ρh(0)

k

]
+ k2

⊥v2
⊥

8Ω2
Cl

[
(k · ρ)2 h(0)

k

]}
. (A 42)

The high-collisionality limit allowed us to obtain the form of h(0), but h(1) is unknown
without inverting the collision operator. We can take advantage of the form of the GK
equation (A 15) to lowest non-trivial order and express directly the required moment of
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C[h(1)] using moments of C[h(0)]. Consider the
∫

d3v(v2
⊥ − 2v2/3) moment of the GK

equation up to order O(k2
⊥ρ2

i νih). In appendix A.4, where we took a v2 moment, we
found that all non-collisional terms in the temperature moment of (A 15) are isotropic
in velocity space to order O

(
k2

⊥ρ2
i νih

)
, and hence they are annihilated by the operator∫

d3v(v2
⊥ − 2v2/3). Using the expansion (A 35) of the collision operator, we find

0 =
∫

d3v
(
v2

⊥ − 2
3v

2) {k · ρCl

[
k · ρh(0)

k

]
− 1

2 Cl

[
(k · ρ)2 h(0)

k

]
+ Cl

[
h(1)

k

]}
=
∫

d3v
{
v2

⊥k · ρCl

[
k · ρh(0)

k

]
− 1

2v
2
⊥Cl

[
(k · ρ)2 h(0)

k

]
+v2

⊥Cl

[
h(1)

k

]
− 2

3v
2k · ρCl

[
k · ρh(0)

k

]}
. (A 43)

Here a few terms have dropped out due to the energy-conservation properties of the
collision operator. Extracting from (A 43) an expression for v2

⊥Cl[h
(1)

k ] and substituting
this expression into (A 42), we obtain an expression for CDk involving only h(0):

CDk =
∫

d3v

{
1
4

(k · ρ)2 Cl

[
(k · ρ)2 h(0)

k

]
− 1

6
(k · ρ)3 Cl

[
k · ρh(0)

k

]

+ k2
⊥v2

⊥
4Ω2

k · ρCl

[
k · ρh(0)

k

]
− k2

⊥v2

3Ω2
k · ρCl

[
k · ρh(0)

k

]
−k2

⊥v2
⊥

8Ω2
Cl

[
(k · ρ)2 h(0)

k

]}
. (A 44)

We proceed to evaluate these integrals:∫
d3v

1
4

(k · ρ)2 Cl

[
(k · ρ)2 h(0)

k

]
= −niχρ2

i k4
⊥

(
3

20
ϕk + 3

16
δTk

Ti

)
, (A 45)∫

d3v
1
6

(k · ρ)3 Cl

[
k · ρh(0)

k

]
= −niχρ2

i k4
⊥

3
20

δTk

Ti
, (A 46)∫

d3v
k2

⊥v2
⊥

4Ω2
(k · ρ) Cl

[
k · ρh(0)

k

]
= −niχρ2

i k4
⊥

3
10

δTk

Ti
, (A 47)∫

d3v
k2

⊥v2

3Ω2
(k · ρ) Cl

[
k · ρh(0)

k

]
= −niχρ2

i k4
⊥

1
2

δTk

Ti
, (A 48)∫

d3v
k2

⊥v2
⊥

8Ω2
Cl

[
(k · ρ)2 h(0)

k

]
= −niχρ2

i k4
⊥

(
3
80

ϕk + 3
64

δTk

Ti

)
. (A 49)

Combining all of these, we get the following expression for the collision term on the
right-hand side of (A 27):∑

k

CDk exp(ik · r) = −
∑

k

niχ
ρ2

i

2
k4

⊥

(
9
40

ϕk − 67
160

δTk

Ti

)
exp(ik · r)

= −1
2

niχρ2
i ∇4

⊥

(
aϕ − b

δT
Ti

)
, (A 50)

where a = 9/40 and b = 67/160. The right-hand side of (A 27) is (A 50)/τni, and hence
follows the ion-density equation (2.9).
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Appendix B. Conservation laws

All calculations in this appendix are done to order O
(
k4

⊥ρ4
i

)
.

The nonlinearly conserved free energy in electrostatic GK is given by

W =
∑

s

∫
d3r

∫
d3v

Tsδf 2
s

2Fs
, (B 1)

where s labels the particle species and Fs is the corresponding Maxwellian equilibrium
distribution.

Using the modified adiabatic electron response (A 13), the electron contribution to (B 1)
is ∫

d3r
∫

d3v
Teδf 2

e

2Fe
= 1

2
Tini

∫
d3r τϕ′2. (B 2)

The ion contribution to W requires some work. Using (A 1), namely, δfi = h − ϕFi, we
obtain ∫

d3r
∫

d3v
Tiδf 2

i

2Fi
=
∫

d3r
∫

d3v
1
2

Ti

(〈
h2
〉
r

Fi
+ ϕ2Fi − 2ϕ 〈h〉r

)
. (B 3)

Using the quasi-neutrality condition (A 16) and the gyroaverage expansion (A 6), we find

∫
d3r

∫
d3v

Ti
〈
h2
〉
r

2Fi
= 1

2
Tini

∫
d3r

[
3
2

δT
Ti

+ ϕ2 + 2τϕ′2 − 1
2
ϕρ2

i ∇2
⊥

(
ϕ + δT

Ti

)]
,

(B 4)∫
d3r

∫
d3v ϕ 〈h〉r = ϕ2 + τϕ′2. (B 5)

Finally, substituting these expressions into (B 3) and combining with (B 2), we get

W = 1
2

Tini

∫
d3r

[
3
2

(
δT
Ti

)2

+ τϕ′2 − 1
2
ϕρ2

i ∇2
⊥

(
ϕ + δT

Ti

)]
. (B 6)

To lowest order in k2
⊥ρ2

i , the free energy is, therefore,

W = 3
2

Tini

∫
d3r

1
2

(
δT
Ti

)2

, (B 7)

as promised in § 2.7. Using (2.17) and (2.18), it is straightforward to show that, up to
multiplicative constants related to the normalisations (2.16), (B 7) satisfies (2.34).

The two-dimensional (k‖ = 0) GK equation for species s has an additional conserved
quantity (Schekochihin et al. 2009), given by

Is = Ts

2Fs

∫
d3R 〈δfs〉2

R = Ts

2Fs

∫
d3R

(
hs − Zse

Ts
〈φ〉R Fs

)2

. (B 8)

In the model that we consider in this paper, only the ions are assumed to have
two-dimensional dynamics – indeed, the modified adiabatic electron response (2.4) arises
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as a consequence precisely of the fast parallel streaming of the electrons. Thus, for the
ions,

I ≡ Ii = Ti

2Fi

∫
d3R (h − 〈ϕ〉R Fi)

2

= 1
2

Ti

∫
d3R

{(
δT
Ti

)2 (
v2

v2
ti

− 3
2

)2

Fi + δT
Ti

(
v2

v2
ti

− 3
2

)
h(1)

+2
δT
Ti

(
v2

v2
ti

− 3
2

)[
τϕ′ − 1

4
ρ2

i ∇2
⊥

(
ϕ + δT

Ti

)
− 1

4
v2

⊥
v2

ti
ρ2

i ∇2
⊥ϕ

]
Fi

}
. (B 9)

Note that I is a function of velocity v. In order to eliminate the unknown h(1), we can
integrate I: ∫

d3v I = 1
2

Tini

∫
d3r

[
3
2

(
δT
Ti

)2

− 1
2

δT
Ti

ρ2
i ∇2

⊥ϕ

]
. (B 10)

Subtracting this from the free energy (B 6), we obtain

W −
∫

d3v I = 1
2 Tini

∫
d3r

(
τϕ′2 − 1

2ϕρ2
i ∇2

⊥ϕ
) = 1

2 Tiniτ

∫
d3r

[
ϕ′2 + ρ2

s (∇⊥ϕ)2] ,

(B 11)

which is the conserved quantity in (2.35). This can be viewed as a version of the
electrostatic GK invariant (Schekochihin et al. 2009)

Y ≡ W −
∑

s

∫
d3v Is, (B 12)

but without the electron contribution Ie, which is not conserved because the electrons do
not obey k‖ = 0.

In order to obtain the third conserved quantity, we go back to (B 9) and consider

∫
d3v

(
v2

v2
ti

− 3
2

)−1

I = Tiniτ

∫
d3r

(
ϕ′ δT

Ti
− 1

2
δT
Ti

ρ2
s ∇2

⊥
δT
Ti

− δT
Ti

ρ2
s ∇2

⊥ϕ

)
. (B 13)

Adding this to (B 11), we obtain

W −
∫

d3v

[
1 −

(
v2

v2
ti

− 3
2

)−1
]

I

= Tiniτ

∫
d3r

[
1
2
ϕ′2 + δT

Ti
ϕ′ + 1

2
ρ2

s

(
∇ϕ + ∇ δT

Ti

)2
]

. (B 14)

This is the quantity that satisfies (2.36).
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Appendix C. Tertiary instability

Using the decomposition (2.59) and dropping the nonzonal–nonzonal interaction terms
in (2.17) and (2.18), we obtain the linearised tertiary-mode equations:

(∂t + ∂xϕ∂y︸ ︷︷ ︸
1©

)
(
1 − ∇2)ϕ′ − (1 −∂3

x ϕ︸ ︷︷ ︸
2©

)∂y
(
ϕ′ + T ′) + (κT −∂xT︸ ︷︷ ︸

3©
)∂y∇2ϕ′

+ (
∂2

x ϕ
)
∂x∂yT ′ − (

∂2
x T
)
∂x∂yϕ

′︸ ︷︷ ︸
4©

= −χ∇4(aϕ′ − bT ′), (C 1)

(∂t + ∂xϕ∂y︸ ︷︷ ︸
5©

)T ′ + (κT −∂xT︸ ︷︷ ︸
6©

)∂yϕ
′ = χ∇2T ′. (C 2)

Let us examine (C 1) and (C 2) to gain some insight into the way in which zonal
fields might affect the ITG instability. Terms ‘1’ and ‘5’ represent the advection of
density and temperature perturbations by the ZF. In the locations of nonzero ZF shear
(∂2

x ϕ �= 0), the zonal advection is responsible for shearing the turbulent eddies and thus
suppressing turbulence. We do indeed find that the growing tertiary modes are localised
where the zonal shear vanishes, ∂2

x ϕ = 0. Terms ‘3’ and ‘6’ reflect the modification of the
background temperature gradient by the zonal temperature gradient ∂xT . Their presence
suggests that a possible mechanism for ITG saturation (or mitigation) is to excite a zonal
temperature gradient that cancels the background gradient, thus effectively eliminating the
turbulent drive (see appendix C.4). Term ‘2’ shows that the derivative of the zonal shear,
∂3

x ϕ, modifies the effective background magnetic field gradient. Terms ‘4’ do not have an
obvious simple interpretation that we know of.

Even though we can always embark on a four-mode calculation similar to the one done
in § 2.8, it is, in fact, not useful in this case. In contrast to the linear regime, where there
is always a well-defined fastest-growing primary mode, neither a monochromatic zonal
profile nor a monochromatic tertiary mode is ever observed in simulations. Instead, we
find ITG modes that are localised around the points of vanishing zonal shear.

C.1. The ITG tertiary instability
Let us derive a heuristic approximation for the growth rate of the ITG instability localised
around a local extremum of the ZF and of the zonal temperature gradient, i.e. around x0
such that ∂2

x ϕ(x0) = ∂2
x T(x0) = 0. Note that terms ‘4’ in (C 1) then vanish at x0. Assuming

that the tertiary modes are sufficiently localised, we can take ∂3
x ϕ and ∂xT to be constant

(Rogers & Dorland 2005). We can then repeat the linear calculation of § 2.6, but now
including the zonally modified gradients of the equilibrium magnetic field and background
temperature, and obtain a dispersion relation for the tertiary modes. For simplicity, let
us consider the collisionless (χ = 0) modes. The resulting growth rate for a mode with
poloidal wavenumber ky is

γ3 =
ky

√
4(1 + k2)(1 − ∂3

x ϕ)(κT − ∂xT) − [
1 − ∂3

x ϕ + (κT − ∂xT)k2
]2

2(1 + k2)
, (C 3)

which is a modified version of (2.22).
Under the same assumptions that we used before to obtain the simplified collisionless

ITG growth rate (2.23), i.e. κT − ∂xT � 1 and k � (κT − ∂xT)−1/4, we find that the tertiary
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growth rate is

γ3 ≈ ky

√
(1 − ∂3

x ϕ)(κT − ∂xT). (C 4)

If there are no background gradients, then γ3 ≈ ky

√
∂3

x ϕ(x0)∂xT(x0), as found by Rogers
et al. (2000). To work out how wide this mode can be, note that we have ignored the effects
of the nonzero zonal shear away from the point x0. Taylor-expanding terms ‘1’ and ‘5’ in
(C 1) and (C 2) around x0, we have

iky∂xϕ(x) = iky∂xϕ(x0) + 1
2 iky∂

3
x ϕ(x0)(x − x0)

2 + O
(
(x − x0)

3) , (C 5)

where the first term represents a Doppler shift in the frequency and the second captures
the effect of the nonzero zonal shear. Dropping the latter is, therefore, valid only in an
interval around x0 such that

γ3 � 1
2

ky∂
3
x ϕ(x0)(x − x0)

2

=⇒ (x − x0)
2 � Δ2 ≡ 2γ3

ky∂3
x ϕ(x0)

≈ 2

√√√√[
1 − ∂3

x ϕ(x0)
] [

κT − ∂xT(x0)
]

[
∂3

x ϕ(x0)
]2 , (C 6)

where we used (C 4) for the final approximation. Rogers et al. (2000) and Rogers &
Dorland (2005) found that the scale Δ is a good approximation for the radial width of
the ITG tertiary mode in the case of no equilibrium gradients.

We find that the standard simplified picture of the ITG tertiary instability outlined
above does not quite describe the observed tertiary modes. Namely, (i) we find a strong
temperature-gradient-driven instability at ZF minima where ∂3

x ϕ > 1 and (C 3) predicts no
instability and (ii) the instability at the ZF maxima is significantly (an order-of-magnitude)
slower than predicted by (C 3). This is detailed in appendix C.3.

C.2. The KH tertiary instability
Recall that, as we showed in § 2.5, (2.17) reduces to the Hasegawa–Mima equation in the
case of κT = 0. This reduction is naturally achieved in the vicinity of a point x0 where
∂2

x ϕ(x0) = ∂2
x T(x0) = 0 and ∂xT(x0) = κT . Then the temperature equation (C 2) decouples

from (C 1) due to the cancellation (or ‘flattening’) of the equilibrium temperature gradient
by the zonal temperature. In that case, T ′ = 0 is a solution to (C 2) and (C 1) reduces to

(∂t + uy∂y)
(
1 − ∇2)ϕ′ − (1 − ∂2

x uy)∂yϕ
′ = −aχ∇4ϕ′, (C 7)

which is the linearised Hasegawa–Mima equation for tertiary modes. This equation has
a KH-like tertiary instability (Kim & Diamond 2002; Numata, Ball & Dewar 2007;
St-Onge 2017; Zhu et al. 2018a). This KH-like instability is also localised around the
radial locations of zero zonal shear and has a threshold roughly given by the necessary
(but, in general, not sufficient) condition that ∂2

x uy − 1 must change sign in the region of
instability, known as the Rayleigh–Kuo criterion (Kuo 1949; Zhu et al. 2018a).

C.3. Tertiary instabilities of the zonal staircase
We now turn to a numerical investigation of the tertiary instability in the
low-collisionality regime. We will consider the parameters and staircase profile of SimH
(κT = 0.36, χ = 0.1). The ITG turbulence trapped in the convection zones at the ZF
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(a) (b)

FIGURE 26. (a) Time-averaged poloidal spectra 〈|ϕ̂(x, ky)|2〉 (black) and 〈|T̂(x, ky)|2〉 (orange),
as defined by (C 8a,b), at a fixed radial location x for a ZF minimum (solid) and a ZF maximum
(dashed). The time average is performed over the entire time period shown in figure 11(a). A
peak in the spectrum is observed around ky ≈ 0.25 for the turbulence at the ZF minima. This
agrees with the wavelength evident in figure 9. In contrast, the ITG turbulence at the ZF maxima
saturates at the largest available poloidal length in the box. (b) Poloidal spectra 〈|ϕ̂(x, ky)|2〉 of
the unstable modes at a ZF minimum for the KH instability that develops in the Hasegawa–Mima
equation (purple) and the fast ITG instability without zonal temperature perturbations (black).
The spectra have been normalised to the maximal value of 1. We see that both modes are
approximately monochromatic, peaked around ky ≈ 0.29 for the KH mode and ky ≈ 0.66 for
the ITG mode. The spectrum of saturated tubulence at the ZF minima peaks around ky ≈ 0.25
(a). This supports the case for the poloidal wavenumber at the ZF minima to be determined by
the KH instability there.

extrema can differ substantially between ZF maxima and minima. For example, it is
evident from figures 8 and 9 that the ZF minima harbour turbulence with a larger poloidal
wavenumber compared to the turbulence at the ZF maxima.

Let us describe this difference quantitatively for SimL. Consider the poloidal Fourier
transforms of our fields at a fixed radial location:

ϕ(x, y) =
∑

ky

ϕ̂(x, ky) exp(ikyy), T(x, y) =
∑

ky

T̂(x, ky) exp(ikyy). (C 8a,b)

Figure 26 shows that the perturbations located at the ZF minima have a ky spectrum
peaked at a finite wavenumber, whereas the perturbations around the ZF maxima saturate
at the largest available poloidal scale in the box.

An asymmetry between the ZF extrema was noticed already by McMillan et al. (2011),
who, in their GK simulations, found that the ZF minima are less effective than the ZF
maxima at stabilising turbulence. This difference has also been extensively studied using
the Hasegawa–Mima equation (Zhu et al. 2018b). We find that these differences are a
consequence of the mechanisms that drive the tertiary modes. By inspecting equations
(C 1) and (C 2), one can instantly identify the culprit of the asymmetry: the sign of ∂3

x ϕ
is different in the maxima (negative) and minima (positive) of the ZF. According to our
analysis of the tertiary instabilities in appendices C.1 and C.2, this has two distinct effects
on the tertiary instability at the ZF extrema: one is related to the modification of the
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magnetic drift term and the second to the existence of the KH tertiary instability at the
ZF minima.

In order to investigate the tertiary instabilities that operate in the saturated state that we
observe, we solve (2.17) and (2.18) numerically with an imposed static ZF profile extracted
from the quasi-static zonal staircase. We do not impose a static zonal temperature profile
because the observed flattening of the equilibrium temperature gradient suggests that the
zonal temperature is an agent of saturation, rather than an instability mechanism.

C.3.1. Tertiary instability at ZF minima
Figure 27 shows the behaviour of the tertiary instability at the ZF maxima and minima.

Let us first discuss the ZF minima. There we observe a very fast ITG-like initial instability
that features both ϕ′ and T ′ growing at the rate γ fast

3 ≈ 0.1. This is of the same order as
the largest linear ITG growth rate γmax ≈ 0.2 for the parameters of this simulation. The
strong radial transport caused by the ITG eddies drives a zonal temperature perturbation
that opposes the equilibrium temperature gradient, thus flattening it. This causes a
‘quasi-linear’ saturation of the ITG instability around t = 50 when the zonal temperature
gradient reaches the level of the equilibrium gradient and the instability is largely
quenched (see also appendix C.4). Afterwards, ϕ′ continues to grow exponentially, albeit
at a much lower growth rate of γ

quenched
3 ≈ 0.003. The nonzonal temperature T ′ does

not grow during this quenched-growth phase and remains about an order of magnitude
lower than the electrostatic potential. As we discussed in appendix C.2, the flattening
of the temperature gradient (κT ≈ ∂xT) and the comparatively low levels of temperature
perturbations (T ′ � ϕ′) imply that ϕ′ satisfies the Hasegawa–Mima tertiary equation (C 7).
We find that the Rayleigh–Kuo criterion ∂3

x ϕ � 1 is satisfied at the ZF minima and so there
is an unstable KH mode. Its growth rate (γ HM

3 ≈ 0.008) and poloidal spectrum are found
to be similar to those of the quenched tertiary following the temperature-profile flattening
(see figure 26). We have found that if we do not evolve the zonal temperature and, thus, do
not allow a flattening of the temperature gradient, the initial fast growth is never quenched.

In the vicinity of the ZF minima, we find ∂3
x ϕ � 1 and (C 3) predicts no ITG mode

there. In fact, we do find an ITG instability (the fast initial one in figure 27) peaked exactly
at x0 where ∂2

x ϕ(x0) = 0, even though ∂3
x ϕ(x0) > 1. We have verified that this is an ITG

instability and not a KH one by setting κT = 0 or by freezing the nonzonal temperature
perturbations and solving the corresponding Hasegawa–Mima equation numerically.
Either of these reduces the tertiary growth rate by an order of magnitude, down to the
level of the KH instability, indicating that the fast mode is indeed an ITG instability. Even
artificially scaling the ZFs in order to get ∂3

x ϕ > 2 in the ZF minima results in a fast ITG
instability there. This tertiary mode is not the one described in appendix C.1 and familiar
from the work of Rogers et al. (2000). A further investigation of it is left for future work.
Its effect in the quasi-stationary zonal-staircase-dominated state is to push the system in
the vicinity of the ZF minima towards a state in which the zonal temperature perturbations
cancel the equilibrium temperature gradient (see appendix C.4).

C.3.2. Tertiary instability at ZF maxima
In contrast to the ZF minima, the ZF maxima are hosts to a wimpy ITG instability with

a growth rate an order of magnitude smaller than that near the ZF minima: γ
wimpy
3 = 0.006

(see figure 27a). Setting κT = 0 eliminates this instability, confirming that it is, indeed, an
ITG instability. The ZF satisfies ∂3

x ϕ < 0 at the ZF maxima, so there is no unstable KH
mode there; this is confirmed numerically. The poloidal wavelength of the turbulence at
the ZF maxima is significantly longer than that at the ZF minima. In fact, in SimL and
SimH, it is determined by the poloidal box size Ly. By increasing Ly, we are able to obtain
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(a) (b)

FIGURE 27. Time evolution of the perturbations in the ZF extrema of the zonal staircase of
SimH. (a) ϕ′2 (solid black) and T ′2 (solid orange) at the ZF minimum at x ≈ 24.5. Dashed
lines show the same quantities at the ZF maximum at x ≈ 47. See figure 8(a) for the ZF profile.
(b) Zonal temperature gradient at the ZF minimum (the ZF maximum has a very low and negative
zonal temperature gradient, not shown). After the initial fast instability, the zonal temperature
gradient settles at ∂xT ≈ κT = 0.36.

FIGURE 28. Snapshots of T and ϕ perturbations for SimH parameters, i.e. κT = 0.36, χ = 0.1,
but for Ly = 600. Evident is a discrepancy in the poloidal wavenumbers of the nonzonal
perturbations at the ZF maxima (x ≈ 5, 50) and ZF minima (x ≈ 30, 75). The dominant
wavenumber at the ZF minima is ky ≈ 0.25, just as in the shorter box (see figure 26), and
ky ≈ 0.03 at the ZF maxima. The poloidal wavelength at the ZF maxima is shorter than the
poloidal size of the box.

a saturated state with a well-defined wavelength at the ZF maxima that is smaller than the
poloidal box size (see figure 28).

The suppression of the ITG instability at the ZF maxima might be due to the localisation
width Δ, naïvely given by (C 6). Using the observed values of ∂3

x ϕ and ∂xT in (C 6), we
find Δ ≈ 1.8 for the fastest mode of (C 3). This suggests that these ITG modes should
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FIGURE 29. Same as figure 8(c), but with plots of the turbulent Qt = −T∂yϕ (black) and
diffusive Qd = −χ∂xT (orange) heat fluxes as well. We can see that the balance (C 10) between
Qt and Qd holds in the saturated staircase (left half of the domain), but does not in the turbulent
regions (right half of the domain), where the turbulence generates a significant turbulent heat
flux.

have radial wavenumbers of the order of kx ∼ 2π/Δ ≈ 3.5, which are deep in the stable
region for the parameters considered (see figure 2b). We leave the detailed investigation of
these modes for future work. Their effect in the quasi-stationary zonal-staircase-dominated
state is to seed turbulence in the shear zones through the emission of travelling structures
(ferdinons) when the zonal shear in the shear zones has been sufficiently weakened by
viscosity (see §§ 3.1.2 and 3.3).

C.4. Zonal temperature saturation and equilibrium gradient flattening
Is it inevitable that the temperature profile is flattened in the regions of vigorous
instability? Intuitively, one might expect this to be a consequence of the high level of
radial transport by the nonzonal (ϕ′) eddies. In that case, the flattening ought to depend on
some measure of the strength of the radial E × B velocity. Let us translate this intuition
into equations.

The zonal part of (2.18) is

∂tT = ∂x
(
T∂yϕ + χ∂xT

) = −∂x (Qt + Qd) , (C 9)

where Qt = −T∂yϕ and Qd = −χ∂xT are the local turbulent and diffusive radial
heat fluxes, respectively. This is a conservation equation for the zonal temperature
perturbations. The fact that the zonal temperature stays constant, i.e. ∂tT = 0, during the
quiescent periods implies a balance of the local radial heat fluxes:

∂x (Qt + Qd) = 0 =⇒ Qt = −Qd + Q =⇒ ∂xT = Qt − Q
χ

, (C 10)

where the integration constant Q is the total box-averaged radial turbulent heat flux defined
by (2.38). Indeed, this balance is observed in the quiescent zonal staircase (see figure 29).

Consider the steady-state (∂t = 0) solution of (C 2). Since we are interested in the
behaviour of the temperature perturbations in the ZF extrema, where the zonal shear
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(a)

(b)

FIGURE 30. Comparison of the estimate (C 14) (orange) and observed turbulent heat flux
(black) of the saturated zonal staircase. To choose k⊥, we estimated kx and ky using the observed
radial width δ of the convection zones and the poloidal spectrum of the turbulence there. The
shaded areas highlight the ZF minima and have a width δ. (a) Data from SimH with δ = 8 (so
kx = 2π/8 ≈ 0.8) and ky = 0.25, corresponding to the spectral peak in figure 26. This gives
k⊥ ≈ 0.8. (b) Same as SimH, but with increased collisionality χ = 1. We estimated δ = 9
(so kx ≈ 0.7) and ky = 0.25, corresponding to the peak of the poloidal spectrum at the ZF
minima in that simulation. This gives k⊥ ≈ 0.7. The agreement is better for the higher value
of collisionality.

vanishes, we drop the effect of zonal shear (formally speaking, we transform to a frame
moving with the local ZF velocity). We find

0 = ∂tT ′ = χ∇2T ′ − (κT − ∂xT)∂yϕ
′. (C 11)

Substituting (C 10) into (C 11) gives us

(χκT − Qt + Q)∂yϕ
′ = χ 2∇2T ′. (C 12)
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Multiplying both sides of (C 12) by the radial E × B velocity ux = −∂yϕ
′ and performing

a poloidal average yields

(χκT − Qt + Q)u2
x = χ 2

(∇2T ′

T ′

)
T ′∂y ϕ′ ≈ χ 2Qtk2

⊥, (C 13)

where we have approximated the thermal diffusion as that of a locally monochromatic
temperature perturbation T ′ with a wavenumber k⊥. Then

Qt = Q + χκT

1 + χ 2k2
⊥/u2

x

. (C 14)

Substituting (C 14) into the rightmost expression in (C 10) yields the following prediction
for the zonal temperature gradient:

∂xT = κT − Qχk2
⊥/u2

x

1 + χ 2k2
⊥/u2

x

. (C 15)

Therefore, for Q > 0, steady-state saturation implies ∂xT < κT . In the case of strong radial
transport, u2

x � χ 2k2
⊥, we obtain

Qt ≈ Q + χκT, ∂xT ≈ κT . (C 16a,b)

Thus, perturbations with a strong radial E × B velocity flatten out the temperature
gradient by generating a strong zonal temperature perturbation, as intuitively expected.
Indeed, (C 14) agrees with the numerical data for the heat flux at the ZF minima (see
figure 30), where we find the fast ITG tertiary instability that saturated via flattening of
the equilibrium temperature gradient, as discussed in appendix C.3.1.
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