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Abstract
The performance of spherical tokamak reactors depends on plasma β, and an upper limit is set
by long-wavelength kinetic ballooning modes (KBMs). We examine how these modes become
unstable in spherical-tokamak reactor relevant plasmas, which may contain significant fast-ion
pressure. In a series of numerically generated equilibria of increasing β, the KBM becomes
unstable at sufficiently high plasma β, and for such cases, it is also significantly unstable even in
the long-wavelength limit. The β threshold for the KBMs is similar to the ideal
Magnetohydrodynamics (MHD) threshold, and in cases without fast ions, their frequencies are
as predicted by diamagnetic-drift stabilised MHD. To isolate and explore the KBMs,
simulations are performed where the pressure gradient is entirely due to the density profile, or
entirely due to the temperature profile; the resulting KBMs have similar properties in the
long-wavelength regime. The introduction of energetic ions restricts the KBMs to longer
wavelengths, and reduces the β threshold somewhat; for parameter regimes of current-day
devices, this is such long wavelength that a global analysis would become necessary. Mode
frequencies in plasmas with a significant fast particle population are seen to be controlled by
fast particle precession frequencies.

Keywords: kinetic ballooning mode, spherical reactor, gyrokinetic simulation, microinstability,
electromagnetic modes, tokamak

(Some figures may appear in colour only in the online journal)

1. Introduction

Fusion reactor power varies approximately as the square of
the plasma pressure, and since the magnetic field strength is
limited by engineering constraints, good fusion reactor per-
formance requires high normalised pressure. Also, for an
H-mode plasma where increasing power only weakly affects
the confinement time, the fusion triple product increases with
increasing β. Therefore, the success of fusion reactors depends
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strongly on achieving plasma β as high as possible. How-
ever, Magnetohydrodynamics (MHD) instabilities may limit
the maximum achievable β in these machines. In particular,
pressure-driven ideal MHD modes are observed to control the
steepness of the pressure profiles, in some regimes [1]. These
modes may set a hard limit on the plasma β in contrast to the
less abrupt confinement deterioration produced by typical drift
modes. This effect may be attributed to the long-wavelength
nature of MHD modes; mixing-length estimates of transport
suggests a very strong transport for typical MHD-ballooning
growth rates and wavelengths. Though kinetic effects may
modify the nature of this hard limit [2], the overall picture
does not change too drastically. The unstable kinetic bal-
looning modes (KBMs) [3–12] are interchange modes due
to bad curvature, and thus closely related to ideal MHD bal-
looning modes; KBMs and ideal ballooning modes have sim-
ilar β thresholds and are modelled to generate very strong
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transport in the threshold β regime. Note the contrast with the
essentially electrostatic ion-scale and shorter wavelength drift
modes such as ion temperature gradient (ITG) modes or
trapped electron modes (TEMs), that tend to lead to a softer
limit to plasma gradients [13–16].

KBMs have been studied in spherical tokamaks (STs) such
as mega amp spherical tokamak (MAST) [17, 18]. Pedestal
KBMs [19] are important for edge localized mode (ELM)
onset [20–22]; the KBM dominant region was found to widen
during the ELM cycle [23] and KBMs can regulate the pres-
sure gradient in the pedestal in this cycle [24]. Unlike these
studies, the present analysis focuses on the core of STs. KBMs
are also observed in a conventional tokamaks, both in the
core and edge. For example, high β hybrid JET discharges are
shown to KBM unstable in the core [25]. Similarly in high β
scenarios, unstable KBMs are shown to exist in the JET pedes-
tal [24]. Studies carried out for DIII-D [26] and ASDEX [27]
plasmas also find pedestal KBMs that play an important role
in ELM onset. Low aspect ratio can stabilize KBMs [28].

The present work is a study of the linear properties of the
KBMs in the core of reactor-relevant, tight aspect ratio plas-
mas. These plasmas are typically characterized by high β,
and a large fraction of the pressure is provided by the ener-
getic ions. Therefore, the interaction of the core KBM with
energetic ions is crucial. The ST core β values can be suffi-
ciently high that even the tails of the bulk ion distributions are
super-Alfvénic.

We study the linear stability properties of the KBMs for
several sets of parameters relevant to ST reactor equilibrium;
in each set, the plasma equilibria β is scanned below and
above the ideal MHD stability threshold. Thus the set of para-
meters are designed to encapsulate the transition from the
quasi-electrostatic to the electromagnetic regime. The trans-
ition from electrostatic to electromagnetic turbulence near the
MHD stability threshold has been previously studied using
nonlinear simulation [7, 29, 30]. In general, once there are
substantially unstable KBM modes present, simulations tend
to find physically implausible levels of heat flux, supporting
the existence of a hard β limit. However, in this study, linear
computation, which is less computationally intensive is con-
sidered; this allows studies of parameter dependence, espe-
cially in the long-wavelength regime (which is prohibitive
for nonlinear simulation), and to compare mode properties to
more basic theory in somewhat different regimes.

To conveniently study the long-wavelength KBM mode
properties near the MHD instability threshold we consider
cases with monotonic q profiles for which the pressure-
gradient driven ballooning modes become strongly unstable.
It is important to note here that the advanced scenario designs
in ST reactors often choose a reversed shear near the axis
to mitigate these instabilities in the core. To self-consistently
incorporate the modification to flux-surface shape, the global
equilibrium is calculated using a Grad–Shafranov solver
(CHEASE) [31–33] for each β value and then local paramet-
ers are extracted for gyrokinetic simulations of the core using
GENE [34–36]. Themain aim of the investigation is to identify
the wavelength range where KBMs become unstable and the
mode properties. A significant fraction of the plasma pressure

is expected to be due to fast particles in an ignited plasma.
These fast particles interact with plasma instabilities [37–41].
Here, we examine how this modifies the transition to KBM
instability and the mode properties. Qualitatively, one import-
ant question is whether the KBMs seen in the local analysis are
substantially unstable in the long-wavelength limit, or whether
the growth rates are much larger at finite kyρi. The system-
scale modes have very different observational features and
consequences on overall performance of the reactors. Earlier
investigations have shown that this depends strongly on local
parameters, with a short pressure gradient scale length leading
to a dominance of long-wavelength instability, and we show in
this study that plasmas with a large fast particle pressure also
tend to become unstable at long wavelength.

Ultimately, this study is designed to feed into transport
simulations that determine the transport fluxes in reactors
operating at high-beta, but these local simulations also probe
parameter regimes relevant to smaller current-day STs like
MAST [42]. From these linear simulations, ratios of fluxes
may be calculated to allow some insight into the transport
expected in the nonlinear saturated transport state. Because
the KBMs are likely to imply a hard limit on device β, the
higher β configurations we study are probably not realisable;
this is mostly an indirect approach to deducing behaviour near
the threshold. We also explore the relationship between these
KBMs and ideal MHD ballooning modes in certain regimes.
The manuscript is organized as follows. Section 2 discusses
the equilibria that are used in the simulations. Section 3 dis-
cusses the linear results for KBM. Section 4 presents the
properties of the KBM in the presence of energetic/fast ions.
Section 5 presents estimation of kinetic effects due to fast
particles. Finally, results are summarized in section 6.

2. Details of the equilibria

In this section, we discuss the MHD equilibria which will be
used for stability studies. This is unlike the procedure most
commonly used, which involves scaling the pressure gradi-
ent in local simulations by fixing the flux surface shape at a
specific minor radius and adjusting the pressure gradient (the
Miller et al [43] parameters are modified to account for finite
β effects). The local fixed-surface-shape approach captures
certain important finite-β equilibrium effects on KBMs. One
reason for our choice is that we wish to later be able to con-
sider stability across the whole device and make contact with
global analysis. Another is that this comes closer to experi-
mentally relevant cases, and ensures that there is a reasonable
global MHD equilibrium associated with the local parameters.

We use numerical equilibrium generated by the CHEASE
code [31–33]. Figure 1(a) shows the up-down-symmetrical
outermost flux surface chosen (this is similar to typical MAST
shots). The relative pressure and toroidal current profiles
p/c21K and I∗/c1 chosen are shown in figure 2 (see [32] for
the definition of I∗). The equilibria are scaled via the con-
stant c1 and the transformation FF ′ → FF ′ + c2 to ensure that
F(0)= 1 (F is the product of the toroidal field strength and R,
so for R0 ∼ 1 this implies B0 ∼ 1) and fix the volume-averaged
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Figure 1. (a) Shape of the last closed flux surface and several inner flux surfaces, with normalised ψ= 0.72, 0.38, 0.1 for β= 12.1% (in
arbitrary spatial units). (b) β profiles for the set of equilibria. The values in the legend represent total β values at the location r/a= 0.5.
(c) q profiles for these cases.

Figure 2. Normalised pressure ( p, thick red trace), and toroidal
current profiles (I∗, thin blue trace) versus radial parameter
s=

√
Ψp for the chosen MHD equilibria (Here, Ψp is the

normalised poloidal flux, defined to be 0 on axis and 1 at the
equilibrium outer boundary).

current. Figure 1(b) shows the eight equilibria of varying
β = p/(B2/2µ0); this scan is generated by scaling the pressure
profile p(Ψ) using the constant K. The values are plotted with
respect to r/a; r is the geometrical minor radius of the flux
surface (half the geometrical width of the flux surface) and
a= r at the outermost flux surface. The equilibria are labelled
by the β values at r/a= 0.5 which is the location where local
gyrokinetic simulations are performed. Figure 1(c) shows the
q profiles with respect to r/a for the set of equilibria; although
the current density profiles are fixed, q profiles vary somewhat
with β, especially for the three highest β cases, and near the
edge.

For self-consistency, the pressure gradient scale length and
β in gyrokinetic simulations will be chosen consistent with
the Grad–Shafranov equilibria, but this does not fix the par-
tition between density and temperature gradients, or amongst
the species.

The Shafranov shift plays a crucial role in the stability
properties of microinstabilities [11]; it usually has a stabilizing

effect on KBM instabilities [8, 24], and is key to achieving
second-stability [44]. But for negative shear, the Shafranov
shift destabilizes the ballooning mode [45]. Subtle effects
of equilibrium representation can be important for correctly
resolving KBM growth rates [46].

Miller parameters [43] are found to approximately paramet-
erise the numerical flux surfaces at r/a= 0.5, and then used to
specify the flux surface geometry in the GENE code (a good fit
was confirmed by plotting the Miller and numerical surfaces).
The values of the various parameters for these equilibria (at
r/a= 0.5, except for the last row, which is on-axis) are given
in table 1. In the table, q, ŝ, κ, δ, dR/dr, R/Lp, respectively,
are safety factor, magnetic shear, elongation, triangularity, the
derivative of the radial coordinate of the centre of the flux sur-
face, and the normalised pressure gradient.

The ideal-MHD ballooning-mode growth rate, in the
incompressible limit, for these equilibria is shown in figure 3.
The growth rates are obtained by numerically solving the
ballooning stability equation of Greene and Chance [47],
modified to include plasma inertia effects. To include iner-
tia effects, the ballooning equation (equation (30) in Greene
and Chance [47]) ∂

∂θα(θ)
∂
∂θ ξ− [K(θ)−ω2]ξ = 0 is replaced

by ∂
∂θα(θ)

∂
∂θ ε− [K(θ)−ω2αJ2/f 2]ξ = 0 (for details of nota-

tion see Greene and Chance [47]). As might be expected, this
shows the strongest growthrates in the high-pressure gradi-
ent region of the core and near the edge. Near the core, rel-
atively low-β case are unstable, likely as a result of very weak
global shear. At r/a= 0.5, the instability is marginally stable
for β= 8.1%. These stability calculations are performed at
ballooning angle θ0 = 0 (where modes are radially aligned on
the midplane), but an additional calculation is shown for the
β= 12.1% case at θ0 = 0.4. The finite ballooning angle has
a very strong stabilizing effect at r≳ 0.4 and very little for
r≲ 0.3. Little effect near the axis is an expected consequence
of the weak magnetic shear there.

3. Linear simulations, two-species cases

This section presents a linear study of unstable modes in a
plasma with two species, D ions and electrons, which are
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Table 1. Parameters used in GENE simulation at r/a= 0.5.

β 1.3% 8.1% 9.6% 11.1% 12.1% 12.9% 13.7% 14.1%

q 1.538 1.508 1.529 1.584 1.624 1.704 1.818 2.031
ŝ 0.814 1.045 1.106 1.206 1.264 1.360 1.467 1.629
κ 1.306 1.32 1.332 1.354 1.373 1.399 1.440 1.505
δ 0.096 0.114 0.120 0.132 0.141 0.155 0.175 0.208
dR/dr −0.098 −0.266 −0.300 −0.349 −0.380 −0.420 −0.467 −0.525
R/Lp 5.833 6.369 6.514 6.682 6.811 7.004 7.265 7.678
β(axis) 3.04% 24.26% 29.84% 38.35% 44.44% 52.44% 63.26% 78.13%

Figure 3. Ideal MHD ballooning mode growth rate versus
geometric minor radius r/a. The curves are labelled using the
mid-radius β value. Dotted curve is β= 12.1%, for ballooning angle
θ0 = 0.4 (all other curves at θ0 = 0).

locally at the same temperature, in the equilibria described in
the previous section.We use the flux tube version of the widely
used comprehensive gyrokinetic code GENE [34–36]. The B∥
fluctuations are included. But the collisions and equilibrium
Er effects are neglected. To help isolate the KBMs, which are
pressure driven modes, cases are first considered with a flat
temperature profile, and a density profile consistent with the
MHD equilibria as shown in figure 4. Later, a flat density pro-
file is considered, so the pressure gradient arises due to the
temperature gradient (this is more reactor-relevant, but sup-
ports a wider variety of instabilities, so we present the sim-
pler case first). Unlike most drift modes, the KBM properties
should largely be sensitive to the pressure gradient, rather than
whether the gradient is in the temperature or density profile.
For all the cases considered, we only identify themost unstable
eigenmode; the sharp jumps in frequency as parameters vary,
indicate that multiple unstable modes may be present.

Only for the lowest β case, and at low ky, is the real
frequency of the instability in the electron diamagnetic
direction (figure 4); the frequency increases with larger β.

For the lowest β case TEM [48–51] may be a plausible can-
didate, and we identify the mode as such even at higher β
(where mode structure and frequencies vary smoothly with
β). At high β, and longer wavelength (low ky), modes that
we identify as KBM are seen (this identification will be jus-
tified later). These first arise for the β= 11.1% case. At the
highest β, a sharp jump in frequency is seen between these
two types of modes. However, at moderate β, there is not a
jump in frequency, suggesting a mixed TEM-KBMmode. The
shorter wavelength TEM mode is somewhat stabilised as β
increases.

For theβ= 11.1% case, whereKBM instability is first iden-
tified, the longest wavelength mode simulated possesses a sig-
nificant growth rate, about 50% of the peak growth rate, and a
simple mixing-length estimate would suggest turbulent fluxes
dominated by long wavelength motion. Calculation of E∥, for
example, for β= 14.1% for kyρs ∼ 0.05 or 0.1 shows that E∥ is
very small, consistent with ideal MHD character. Similar cal-
culations for the lowest β case shows that the inductive com-
ponent of E∥ is very small implying that the mode is largely
electrostatic.

Figure 4 also shows a comparison of the real mode fre-
quencies in gyrokinetic theory with diamagnetic-drift stabil-
ised MHD, where the mode frequency scales as ωpi/2 [3, 5]
(ωpi is the diamagnetic drift frequency). The KBM frequencies
match quite well with this curve (which varies only weakly
with β, and is evaluated for the β= 14.1% case). Even though
at lower β values there is not a sharp transition from KBM to
TEM, at least in the long wavelength limit the dispersion still
appears to match this simple theory.

Note that the values of the growth rate in the ky → 0 limit
are also a good match to ideal MHD ballooning theory; for
example, the β= 12.1% case has γ∼ 0.9 cs/R in this limit,
whereas the MHD growthrate is 1.1 cs/R.

We now report linear simulations with a temperature gradi-
ent but flat density, which are summarised in figure 5. At
the lowest β value, the low ky modes in the ion diamag-
netic direction are identified as ITG, and the higher ky modes
in the electron direction as TEM. For this case, the electro-
static potential of both modes has ballooning parity. At and
above β= 11.1%, KBMs are observed at long wavelength,
with frequencies linearly proportional to ky. The growth rates
of the KBMmodes increase with β; these growth rates peak at
long wavelength, kyρs ∼ 0.15 but the growth rate in the long
wavelength limit is not much lower than the peak growth rate,
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Figure 4. Real frequencies (a) and growth rates (b) versus kyρs for the density gradient driven case (temperature flat), for two-species
simulations.

Figure 5. (a) Real frequency and (b) growth rate of the fastest growing modes, versus kyρs, for temperature gradient driven (flat density)
two-species cases.

Figure 6. A∥ as a function of z for (a) kyρs = 0.414 and (b) kyρs = 0.77 for β= 8.1%.

as in the density-gradient driven case. For all but the lowest
β case, the vector potential of the modes in the electron dia-
magnetic direction exhibit even parity (consistent with tearing
modes [52–54]) and are thereforemicrotearingmodes [52, 55–
58]. A comparison for A∥ in the ballooning space is shown in
figure 6 for β= 8.1% and for kyρs = 0.414 and kyρs = 0.77
which exhibit real frequency respectively in the ion and elec-
tron direction. A∥ for kyρs = 0.414 shows odd parity and for

kyρs = 0.77 even parity. More generally the frequencies and
growth rates of the modes identified as KBMs (but not the
other drift modes) in the temperature gradient driven case are
similar to the density gradient driven case, as expected.

We also studied the effect of ballooning angle θ0 on
the growth rates and real frequencies of the KBM for the
density gradient driven case and β= 12.1%. Figure 7 shows
the corresponding results for kxcentre = 0 and 0.1. The long
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Figure 7. Real frequency (a) and growth rates (b) versus kyρs for kxcentre = 0,0.1 for density gradient driven KBMs at β= 12.1%.

Figure 8. Real frequency (a) and growth rates (b) versus binormal wavenumber of density gradient driven modes in the presence of
energetic ions with βf /β= 20%.

wavelength KBMbranch vanishes away from θ0 = 0. A kxcentre
scan for kyρs = 0.2 mode and quadratic fitting to the first
few points (not shown here) suggests a stabilisation rule of
the form γ = γ0[1− (θ0/θk)

2], with θk∼ 0.4. However, des-
pite the KBM being stabilised at θk∼ 0.4, a weaker instabil-
ity is still present at kyρs ≲ 0.4, which is determined to be an
unstable TEM.

4. Effect of energetic ions

In this section, we investigate the effect of energetic ions,
which might arise either due to external heating systems or
fusion power, on microinstabilities. The is modelled by adding
an additional hot, thermal, D component to the plasma, but
since the collisionless physics only depends on the mass-to-
charge ratio, the conclusions also apply to He ions with tem-
perature higher by a factor of two and the same pressure.
Instabilities, in general, are somewhat sensitive to the shape
of the distribution function [59] (energetic ions would usually
not be thermal), but for the study of generic tokamaks focused
on pressure-driven instabilities, a thermal approximation may
suffice.

The baseline temperature ratio chosen for the study is
Tf/Te = 25, the density ratio is nf/ne = 0.02 and the energetic

ion β is about 20% of the total plasma β; such levels of fast
particle pressure are reached in certain experiments [60] and
typical in ST reactor designs [61–63]. In these scans, the back-
ground plasma temperature is lowered so the total β stays con-
sistent with the numerical MHD equilibria. That is, the fast
particles change the nature of the drive relative to the equi-
valent case without fast particles, but not its strength. To aid
comparison with the zero-fast-particles cases, the fast particle
density/pressure profiles are proportional to the background
species profiles.

Figure 8 shows the real frequency and growth rates for the
density-gradient-only case in the presence of energetic ions.
The real frequencies of KBMs in figure 8(a), which appear at
long wavelength, are again roughly proportional to wavenum-
ber; but unlike in the two-species case the frequency decreases
quite strongly with β. The real frequencies of KBMs are also
much higher in the energetic-ion cases and not in agreement
with diamagnetic-drift stabilised MHD. We will show that the
fast particle pressure is strongly out of phase with the back-
ground species pressure; this appears to be largely due to the
rapid precession of the trapped fast ions; the tight aspect ratio
means that these comprise a substantial fraction of the driving
pressure. A dimensional estimate of the fast ion precession fre-
quency may be obtained as
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Figure 9. Electrostatic potential ϕ versus parallel coordinate z for kyρs = 0.1 and β= 12.1% without (a) and with (b) energetic ions.

Figure 10. Real frequency (a) and growth rates (b) versus binormal wavenumber of temperature gradient driven modes in the presence of
energetic ions with βf /β= 20%.

ωp = (k⊥ρi)(Tf/Ti)cs/R (1)

but this estimate assumes the magnetic field strength scales as
1/R, which is increasingly not the case in the higher β simula-
tions. In this case,

ωp = (k⊥ρi)(Tf/Ti)cs|∇B|/B (2)

is a better estimate. The ∇B reversal in the unstable region
in the higher β cases thus might be a plausible reason for the
decrease in mode frequency with β, because this reduces the
net precession frequency of the trapped particles.

The real frequencies of KBMs are also much higher in the
energetic-ion cases and not in agreement with diamagnetic-
drift stabilised MHD. We will show (in section 5) that the fast
particle pressure is strongly out of phase with the background
species pressure; this appears to be largely due to the rapid
precession of the trapped fast ions; the tight aspect ratio means
that these comprise a substantial fraction of the driving pres-
sure. The ∇B reversal in the unstable region in the higher β

cases might be a plausible reason for this trend, because this
reduces the net precession frequency of the trapped particles.

Unlike in the two-species case, there is a clear ky value
where the long-wavelength KBM becomes subdominant to
another kind of mode. As β increases and the real growth rate
of the KBMs increases (figure 8), the KBMs are dominant up
to higher ky. In general, unstable KBMs are observed at lower
ky compared to the two-species case, but the equivalent two-
species case does not show a sharp transition, so a direct com-
parison is difficult. Direct FLR effects might explain why the
KBMs are not unstable much beyond kyρs = 0.2, where kyρf =
1, but the dephasing of the fast particle and background pres-
sure fluctuations is likely to also play a role. Figure 9 shows
the mode structure of ϕwith and without energetic ions for the
β= 12.1% density gradient driven case. The mode structures
are qualitatively similar in the both cases; ideal MHD would
find modes with constant complex phase, so the small ima-
ginary part is indicative of kinetic effects, which are slightly
larger for the case with fast ions. This is also the case for A||
(not shown here).
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Figure 11. The real frequency (a) and growth rates (b) versus kyρs for the location r/a= 0.3, 0.5, 0.7 for the two-species case (no fast ions).

Figure 12. The real frequency (a) and growth rates (b) versus kyρs for the location r/a= 0.3, 0.5, 0.7 with fast ions.

Figure 10 shows the effect of energetic ions on the real
frequencies and growth rates of the KBM for the case with
temperature gradients only. The overall qualitative picture
remains the same as in the density-gradient driven case. How-
ever, in the presence of temperature gradients, there is a wider
range of modes that can become unstable and compete with
the KBM. Again, generally, the energetic ions destabilise the
KBMs more effectively at a long wavelength than in the two-
species case, but the KBM becomes subdominant at longer
wavelengths in the case with energetic ions.

We carried out simulations for r/a= 0.3 and r/a= 0.7 for
the β= 12.1% (at mid-radius) density gradient driven case and
compare with the case for r/a= 0.5 of figure 4. We first show
the results without energetic ions in figure 11. The KBMmode
is unstable at r/a= 0.3. However, for r/a= 0.7 the KBMmode
is stable. This is in conformity with MHD calculations presen-
ted in figure 3.

The calculations with energetic ions for the same cases are
shown in figure 12. Again the effect of energetic ions for the
case at r/a = 0.3 is similar to that discussed in the context
of figure 8. The location at r/a= 0.7 is KBM stable even in
the presence of energetic ions. However, this equilibrium does
not have representative profiles near the pedestal, so we did
not simulate the case at r/a= 0.9. Note that the frequencies of
the fast particle-driven KBMs at r/a= 0.3 are roughly halved

compared to the r/a= 0.5 case at equal kyρs; this is consistent
with the notion that trapped-particle precession is driving the
mode frequency, since the trapped particle fraction is consid-
erably smaller at r/a= 0.3.

5. Estimating kinetic effects due to fast particles

In the low frequency limit, MHD ballooning theory predicts
constant fluid pressure along the field line, so pressure is
constant in the frame moving with the fluid, and the per-
turbed pressure δp can be related to the background pressure
p via

∂

∂t
δp=−v ·∇p (3)

where v is the MHD fluid velocity. The phase angle or argu-
ment Arg(X) = ϕ is the imaginary part of the logarithm of ϕ,
defined such that X= |X|exp(iϕ). The phase of pressure per-
turbations relative to velocity is thus Arg(p0/v) =−Arg(Γ)
(where Γ= γ+ iω). The dominant MHD fluid velocity is
vExB = B×∇ϕ/B so the phase of the radial component of the
velocity relative to the electrostatic potential is Arg(vr/ϕ) =
−π/2; we then have Arg(p0/ϕ) =−π/2−Arg(Γ). For a
growing MHD mode, with Γ real, the pressure and potential
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Figure 13. Phases of plasma pressure components (electrons in green trace, ions in red, fast particles pink, total grey), plasma potential
(black trace), and fluid model pressure response (blue trace) versus parallel coordinate z for KBM eigenmodes for kyρs = 0.05 without
(a) and with (b) fast particles. Note that the ion and electron traces are so similar that they are visually indistinguishable.

are out of phase by π/2, but this is not necessarily the case
when kinetic effects are present.

We evaluate the relative phases of components of the pres-
sure and electrostatic potential in the simulation to explore
these kinetic effects (figure 13); the cases examined are
density-driven simulations, with kyρs = 0.05, β= 0.121, with
no fast particles, and with Tf/Te = 50 for the case with fast
particles. The phase of the fluid and field quantities may be
interpreted as an offset in the toroidal angle between the sinus-
oidal waves in this direction. For the simulation without fast
particles, the fluid phase relation is fairly closely reproduced
and the predicted phase matches well; also note that in these
simulations the pressure fluctuation is almost entirely a density
fluctuation, so the ion and electron pressures are constrained
by quasineutrality to be near-equal. With fast particles added,
the phase relation is still approximately verified by the back-
ground ions and electrons, but the fast particles are advanced
towards positive phase. The most likely explanation is the fast
particle toroidal precession frequency; due to the tight aspect
ratio, a large fraction of particles on the outboard side are
trapped, and the precession frequencies of the fast particles are
larger than those of the bulk species by a factor of the temper-
ature ratio. Direct observation of the phase of the distribution
function (not shown) indicates that the trapped particles are
indeed advanced in phase. The overall phase of the pressure
fluctuation is in between the bulk and fast ion phases.

For this case, the destabilisingMHD curvature drive energy
κ is a 1.23 times as large as the field line bending term Y
(these are the energies associated with these terms, associated
with the MHD eigenvector, and found by integrating along the
ballooning angle). We consider this as an impact on the total
MHD drive

Ω2
MHD = κ−Y→ κexp(iη)−Y (4)

where η is the advance angle of the kinetic pressure response
over the MHD model. That is, we are considering the fast

particle precession to impact the phase of the MHD curvature
drive, and not the amplitude. Because, near marginal stability,
κ and Y nearly cancel, this can lead to a small advance angle
having a significant effect on mode frequency, and complete
stabilisation of the mode for advance angles much less than
π/2.

The ratio between the unmodified and modified squared
growthrate in the case with fast particles, using η∼ 0.2 estim-
ated from figure 13, is 0.9+ 1.06i. If this estimate is scaled to
match the real part of the growthrate, we predict a mode fre-
quency of 0.54 cs/R, which is somewhat below that observed:
this is at least partly because we have ignored the diamagnetic
effects, which are sufficient to give the zero-fast-ion case a real
frequency of 0.32 cS/R.

η is expected to scale roughlywith k⊥, and this suggests that
the modified growthrate should approach zero at approxim-
ately kyρs = 0.15 for this case, which is close to the observed
stability threshold. As the growth-rate of the mode increases
with β, and the precession effect tends to become less signi-
ficant as the absolute mode frequency increases, this model
would predict a smaller advance angle with higher β, and thus
lower frequency. This is consistent with the decrease in KBM
mode frequency seen at higher β.

5.1. Fast particle temperature ratio dependence

We investigate the influence of the temperature ratio between
the background species and the energetic ions; this is shown in
figures 14 and 15 for density and temperature gradient driven
cases, respectively. In this case, the fast particle density is kept
fixed at 1% of the electron density, so the fraction of pres-
sure in the fast particle species is proportional to the temper-
ature ratio. The real frequencies of KBMs in both the density
and temperature gradient driven cases increase with increas-
ing Tf/Te ratio. At modest temperature ratios (more typical
of current day devices than reactors), the modification due to
addition of fast particles is significant, but qualitatively the
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Figure 14. Real frequency (a) and growth rates (b) versus kyρs for different Tf/Te for β= 0.121 for density gradient driven simulations.

Figure 15. Real frequency (a) and growth rates (b) versus kyρs for different Tf/Te for β= 12.1% for temperature gradient driven
simulations.

traces look fairly similar. The KBM growth rates at the longest
wavelength increase with Tf/Te, but the wavenumber where
the KBMs become subdominant reduces with Tf/Te. A sharp
separation between the KBMs and other modes is seen at suffi-
ciently high Tf/Te. Note that the frequencies of the KBMs are
again proportional to the temperature in this case, consistent
with the trapped particle precession-frequency being respons-
ible for setting the frequency. The same trend holds for both
density and temperature gradient driven modes in figures 14
and 15.

6. Summary and conclusions

In this work, we examined the linear properties of unstable
modes in high β ST reactor-relevant plasmas using numer-
ical MHD equilibria and local gyrokinetic simulations. The
focus is on KBMs, which are thought to set a hard β limit,
and their relationship to ideal MHD instabilities. Especially
in the long-wavelength limit, the KBMs examined here were
found to have similar properties and growthrates to ideal
MHD ballooning modes. In principle, other kinds of high-β
instabilities could have appeared, such as gap modes driven
unstable by fast particle resonances, but these were not
observed.

We first presented an analysis of two cases without ener-
getic ions (the ‘two species’ case): one is solely driven by the
density gradient and the other is driven solely by the temper-
ature gradient. Although only the temperature-gradient driven
case is relevant for instabilities in the tokamak core, the two
cases allowed an unambiguous identification of the KBM,
which is sensitive mostly to overall pressure gradient (a mixed
KBM-TEM is observed in the density gradient driven case
though). The KBM frequencies, β threshold, and mode char-
acteristics (e.g. small E||, fluid-like transport) are consistent
with drift-stabilised MHD theory, demonstrating that these
may be seen as modified ideal ballooning modes. Although
these have peak growth rate at kyρs ∼ 0.15, the KBMs are
almost as unstable in the long wavelength limit, suggesting
very large transport and a hard β limit. This is in line with
results in simpler geometry at large aspect ratio [5], where
substantial infinite-wavelength instability is seen given suffi-
ciently strong logarithmic gradients. Given the lowmode num-
ber of these modes if present in ST devices like MAST, they
may be observable directly in magnetic signals.

We also tested the effect of adding an energetic ion spe-
cies (with a high baseline temperature ratio) with both pure
temperature and pure density gradient drive. With energetic
ions present, KBMs are excited at lower total β and are only
seen at even longer wavelength with wavenumbers kyρs ≲ 0.2.
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This implies that the threshold is reduced with the inclusion
of the energetic ions. This is not surprising given the large
Larmor radii of the energetic ions, but bounce orbits are also
seen to play a significant role. The frequencies of KBMs in
the energetic-ion case are controlled by the fast-ions (despite
contributing only 20% of the pressure) and we attribute this to
trapped particle precession effects; the effect is large because
STs have a large trapped particle fraction. Given that these
KBMs are able to give rise to transport of all the species, they
should be observable through their effects on profiles, and their
long wavelength should also facilitate direct external obser-
vation. The high energy of the fast particles for the baseline
case (Tf/Te = 25) gives rise to a more separate and distinct
fast-particle-associated KBM than at lower temperature ratios.
The longer wavelengths and higher frequencies are likely to
change the nonlinear phenomenology significantly, and may
mean these modes are relatively independent from the turbu-
lence at bulk ion scales.

The very longwavelengths of themodesmeans that a global
analysis [64–66] is really needed to understand their influence
in (relatively small) existing STs like MAST, where they may
give rise to largely-independent eigenmodes, and phenomen-
ology similar to typical fast-particle instabilities, rather than
turbulence typical of microinstabilities. For example, at ρ∗=
1/100, typical of existing STs, toroidal mode number of 1 cor-
responds to ky∼ 0.05. Similarly, these modes were entirely
stabilised at small ballooning angles kx/(kyŝ)∼ 0.4, which
implies a radial mode envelope comparable to the device size
in MAST. In current-day STs, fast-ion gyroradii and bounce
orbits are large enough that a standard local gyrokinetic treat-
ment of these fast-ions is in any case not appropriate; for
example, potato orbits may extend to mid-radius. In larger,
reactor-scale devices, fast-ion driven KBMs could potentially
set a hard limit on reactor performance more severe than
the ideal ballooning threshold, especially if nonlinear effects
allow them to be driven below the instability threshold.

STs like MAST often rotate rapidly due to large external
torques. Given the narrow peak in ballooning angle of the
KBMgrowth rates thesemay be strongly suppressed in current
day STs (but possibly not reactors with little external torque).
We have not included collisions in our simulations, but note
that the collisionless KBM growthrates match quite closely
the collisional MHD growthrates in the long wavelength limit.
Collisions can have a stabilizing effect on KBMs [67] but at
least in the pedestal this effect appears weak [68].
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