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A new algorithm for toroidal flow shear in a linearly implicit, local δf gyrokinetic code
is described. Unlike the current approach followed by a number of codes, it treats flow
shear continuously in time. In the linear gyrokinetic equation, time-dependences arising
from the presence of flow shear are decomposed in such a way that they can be treated
explicitly in time with no stringent constraint on the time step. Flow shear related time
dependences in the nonlinear term are taken into account exactly, and time dependences in
the quasineutrality equation are interpolated. Test cases validating the continuous-in-time
implementation in the code GS2 are presented. Lastly, nonlinear gyrokinetic simulations
of a JET discharge illustrate the differences observed in turbulent transport compared with
the usual, discrete-in-time approach. The continuous-in-time approach is shown, in some
cases, to produce fluxes that converge to a different value than with the discrete approach.
The new approach can also lead to substantial computational savings by requiring radially
narrower boxes. At fixed box size, the continuous implementation is only modestly slower
than the previous, discrete approach.
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1. Introduction

In the core region of tokamaks, gradients of plasma parameters drive turbulence at
microscales of the order of the ion or electron gyroradius. The resulting losses of particles,
momentum and heat towards the vessel wall set a limit for the densities and temperatures
that can be sustained in the device, which in turn limits the rate of fusion reactions.
In current and future experiments such as JET and ITER, the core plasma is, in part,
heated and fuelled by injecting energetic beams of neutral atoms of hydrogen isotopes
(deuterium and tritium). As the beams penetrate into the core, they apply a torque on the
plasma and make it spin toroidally. Experimental, theoretical and computational results
have shown that the presence of shear in the toroidal rotation can substantially affect
turbulent transport: shear in the flow perpendicular to the mean magnetic field has been
found to reduce transport, while a gradient in the parallel flow can enhance transport, see
e.g. Catto, Rosenbluth & Liu (1973), Artun & Tang (1992), Barnes et al. (2011a), Casson
et al. (2009), Dimits et al. (1996), Mantica et al. (2009), McKee et al. (2009), Peeters &
Angioni (2005), Synakowski et al. (1997), Waelbroeck & Chen (1991), Waltz, Dewar &
Garbet (1998), Waltz et al. (1995) and Waltz et al. (2007).
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The first implementation of flow shear for local, δf gyrokinetic simulations was
developed by Hammett et al. (2006) in the linearly implicit-in-time code GS2
(Kotschenreuther, Rewoldt & Tang 1995), and was later applied to others including
GENE (Jenko et al. 2000), GKW (Peeters et al. 2009) and CGYRO (Candy & Belli
2018). In this approach, the system of gyrokinetic and Maxwell equations is expressed
in the frame that rotates and shears along with the flow, allowing the equations to be
Fourier analysed across the mean magnetic field. The effective radial wavenumber in
the laboratory frame – a constant without flow shear – becomes time-dependent in the
presence of flow shear. To retain the benefits of using a code that is implicit in time,
this approach to flow shear approximates such time-dependences by combining a nearest
point approximation on a fixed grid, together with a wavenumber remapping method. This
ensures that the computationally expensive part of the implicit scheme only needs to be
executed at initialisation, rather than at every time step. However, many experiments only
sustain modest levels of flow shear, for which the radial wavenumber evolves very slowly:
simulations then produce long periods of time where the perpendicular flow shear has
no effect, separated by discrete jumps in wavenumber. We wish to avoid this unphysical
behaviour, and consider here an improved, continuous-in-time approach to flow shear.

This work is organised as follows. First, we give a brief overview in § 2 of the gyrokinetic
ordering, the coordinates that are used, and the system of Fourier-analysed equations that
have to be solved. In the next section, we summarise the main algorithm of GS2, as well
as the discrete-in-time approach to flow shear developed by Hammett et al. Following
this, we present a new algorithm that treats flow shear continuously over time. Finally,
in § 4, we show numerical results obtained with GS2 that test the implementation of the
continuous-in-time approach, and compare it with the discrete-in-time method.

2. Model

In this section, we give a brief overview of the standard orderings assumed in δf
gyrokinetic flux tube codes such as GS2 and present the equations solved in the code.
We then explain how the presence of a sheared background toroidal flow modifies the
spectral representation that is used in the plane perpendicular to the magnetic field.

2.1. Orderings and equations
The δf gyrokinetic description (Catto 1978; Frieman & Chen 1982) hinges on scale
separations in both time and space: the fluctuations of interest are chosen to be much
slower than the gyromotion of particles around magnetic field lines, and the gyroradii
are assumed to be much smaller than the equilibrium length scale. The distribution
function f can be described as the sum of an equilibrium piece 〈 f 〉 and a fluctuating piece
δf = f − 〈 f 〉, where 〈·〉 denotes an ensemble average. The fluctuating part is ordered to be
much smaller than the equilibrium quantity,

δf
〈 f 〉 ∼ ρ∗ ≡ ρ

L
� 1, (2.1)

where ρ = |ρ| = |b̂ × v/Ω| is the gyroradius and L is the equilibrium length scale
(typically the minor radius of the tokamak). Here b̂ = B/B denotes the unit vector in
the direction of the magnetic field B, B is the norm of B, v is the velocity of the particle
and Ω = eZB/mc is the gyrofrequency with Z the charge number of the particle, e the
elementary charge, m the particle mass and c the speed of light. In the frame moving
with the background plasma flow u, the fluctuations described by δf are associated with a
typical frequency ω ∼ ρ∗Ω (Sugama & Horton 1998). The fluctuations are assumed to be
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elongated along field lines (∼ L) but much thinner across field lines (∼ ρ). On the other
hand, the equilibrium part evolves on the energy confinement time scale τE ∼ (ρ2

∗ω)
−1 and

has a typical length scale of order L both along and across field lines. To summarise the
orderings are

1
ρ∗Ω

(
∂

∂t
+ u · ∇

)
ln (δf ) ∼ Lb̂ · ∇ ln(δf ) ∼ ρ∇⊥ ln(δf ) ∼ O(1), (2.2)

1
ρ3∗Ω

(
∂

∂t
+ u · ∇

)
ln〈 f 〉 ∼ L∇ ln〈 f 〉 ∼ O(1). (2.3)

Within this asymptotic expansion in ρ∗, we restrict ourselves to the high-flow regime, in
which the background flow u is first ordered to be comparable to the ion thermal speed
vth,i = √

2Ti/mi, with Ti the ion temperature. We then consider a subsidiary expansion
in the Mach number M ≡ u/vth,i such that ρ∗ � M � 1, and we neglect second-order
effects in M. In the high-flow regime, the background plasma flow is toroidal to lowest
order in ρ∗, and the associated angular frequency Ωφ is constant on a magnetic flux
surface (Catto, Bernstein & Tessarotto 1987): u = Ωφ(ψ)R2∇φ + O(ρ∗vth,i) with ψ the
flux surface label, R the major radius and φ the toroidal angle.

Making use of the assumptions above, one can express the Vlasov equation order
by order in ρn

∗Ωf for n = 0, 1, 2 and average over the rapid gyromotion to obtain the
gyrokinetic equation governing the evolution of fluctuations of the distribution function,

∂gs

∂t
+
(

u + w‖b̂ + V d,s + 〈V E〉Rs

)
· ∇gs = −eZsF0,s

Ts

(
w‖b̂ + V d,s

)
· ∇〈ϕ〉Rs − 〈V E〉Rs

·
(

∇F0,s + Imsw‖
BTs

F0,s∇Ωφ

)
. (2.4)

Here, the subscript s labels the species, 〈·〉Rs = (2π)−1
∫ 2π

0 (·) dγ denotes an average
over the gyrophase γ at fixed gyrocentre Rs = r − ρs with r the particle position, and
derivatives are taken at fixed (Rs, εs, μs), gs(Rs, εs, μs) = 〈δfs〉Rs is the gyroaveraged
fluctuating distribution function, εs = msw2/2 is the particle kinetic energy, μs =
msw2

⊥/2B is the magnetic moment, ϕ is the fluctuating electrostatic potential, w = v − u is
the particle velocity relative to the background flow, w‖ = w · b̂ is its component along the
magnetic field, I(ψ) = R2B · ∇φ, and F0,s is a Maxwellian distribution of velocities. The
species-dependent guiding centre drift velocity V d,s = V B,s + V C,s includes the ∇B and
curvature drifts V B,s = b̂/Ωs × [w2

⊥∇ ln(B)/2 + w2
‖b̂ · ∇b̂], as well as the Coriolis drift

V C,s = (2w‖Ωφ/Ωs)b̂ × (Ẑ × b̂), with w⊥ = w − w‖b̂ the component of w perpendicular
to the magnetic field, and Ẑ the unit vector in the vertical direction. The fluctuating
E × B drift is given by V E = cb̂/B × ∇ϕ. For the purpose of this work, we are neglecting
fluctuations of the magnetic field and the effects of collisions.

The system is closed with the quasineutrality equation,

∑
s

Zs

∫
d3w〈gs〉r =

∑
s

Z2
s e

Ts

(
nsϕ −

∫
d3w〈〈ϕ〉Rs〉rF0,s

)
, (2.5)

where ns is the density of particles, and the brackets 〈·〉r denote an average over the
gyrophase at fixed particle position.
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2.2. Shearing frame coordinates
Solving the gyrokinetic equation over a machine-sized domain can be computationally
very expensive. Instead, GS2 and other ‘local’ codes focus on a thin, filament-like
simulation domain known as a flux tube, which extends along a magnetic field line as
it wraps around the torus. In directions perpendicular to B, the flux tube is assumed
to be wide enough (several ρ) for the fluctuations on one side of the domain to be
decorrelated from the ones on the opposite side. Ideally the flux tube is kept much narrower
than the equilibrium length scale L so that equilibrium quantities and their gradients
can be considered as constant across B in the simulation. Formally, it corresponds to
the limit ρ∗ → 0. This local approximation ensures that fluctuations at either end of the
perpendicular domain are not only decorrelated but also statistically identical. It is further
assumed that two such instances of turbulence can be set exactly equal to one another
without affecting the statistical properties of the simulation domain. Hence, periodic
boundary conditions are enforced (Beer, Cowley & Hammett 1995) perpendicular to B.

In the local approximation, the toroidal angular frequency is given by Ωφ(ψ) � φ,0 +
′
φ,0(ψ − ψ0), where the subscript 0 indicates that a quantity is evaluated along the central

field line in the simulation domain and the prime denotes differentiation with respect to
the flux label ψ . In the absence of flow shear (′

φ,0 = 0), GS2 works in the corotating
frame (θ, x, y), where the poloidal angle θ serves as the coordinate parallel to the field, x
is the radial coordinate and y is the coordinate perpendicular to the field line within the
flux surface,

x = q0

rψ,0Br
(ψ − ψ0), (2.6)

y = 1
Br

∂ψ

∂rψ

∣∣∣∣
rψ,0

(α − α0), (2.7)

where Br is a reference magnetic field strength, q(ψ) is the safety factor, rψ is the
half-diameter of a flux surface at the height of the magnetic axis, and α = φ − qϑ −φ,0t
is the field line label with

ϑ(θ, ψ) = 1
q

∫ θ

0

B · ∇φ
B · ∇θ

∣∣∣∣
ψ,θ ′

dθ ′. (2.8)

Note that the x and y coordinates are not orthogonal.
In the presence of flow shear (′

φ,0 �= 0), the new terms appearing in the gyrokinetic
equation through u · ∇ are not periodic in x and so the periodic solution obtained by
Fourier transforming in (x, y) is not consistent with the equation. The solution adopted
in GS2 (Hammett et al. 2006) is to restore periodicity by working in the shearing frame
(θ, x, y∗), with

y∗ = y − xγEt, (2.9)

where the shearing rate is defined as

γE = rψ,0
q0

∂Ωφ

∂rψ

∣∣∣∣
rψ,0

. (2.10)

From here on, the star superscript will be used to indicate that the associated quantity
is time dependent in the presence of flow shear. It is not to be confused with the usual
notation for complex conjugates.

https://doi.org/10.1017/S0022377821000453 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000453


Continuous-in-time algorithm for flow shear 5

2.3. Spectral representation
Given the periodic boundary conditions in the perpendicular directions discussed above,
any fluctuating quantity Φ can be expressed as a Fourier series in the shearing frame,

Φ(t, x, y∗, θ) =
∑
kx,ky

Φ̂k(t, θ) exp(ikxx + ikyy∗), (2.11)

where we define the wavevector k = kx∇x + ky∇y∗, with wavenumbers given by kx =
jx�kx, ky = jy�ky, grid spacings by �kx = 2π/Lx, �ky = 2π/Ly, Lx and Ly are the
perpendicular sizes of the computational domain, and with the integer indices spanning
−(Nx − 1)/2 ≤ jx ≤ (Nx − 1)/2 and 0 ≤ jy < Ny, respectively. Note that the exponent
can also be written in terms of (x, y) as ik∗

x (t)x + ikyy where k∗
x (t) ≡ kx − kyγEt is the

effective, time-dependent radial wavenumber in the laboratory frame. With this spectral
representation in the shearing frame, time dependences due to flow shear appear when
either a gradient or a gyroaverage is applied to a fluctuating quantity,

∇⊥Φ =
∑
kx,ky

ik∗(t)Φ̂k exp(ikxx + ikyy∗), (2.12)

with k∗(t) = k∗
x (t)∇x + ky∇y and

〈Φ(r)〉Rs =
∑
kx,ky

J∗
0(t)Φ̂k exp(ikxx + ikyy∗), (2.13)

where J∗
0(t) ≡ J0(|k∗| ρ) is the zeroth Bessel function of the first kind evaluated using the

time-dependent, laboratory frame wavevector.

2.4. Fourier transformed equations
Having restored periodicity across the magnetic field by working in the shearing frame,
the gyrokinetic equation can be expressed in Fourier space as follows:

∂ ĝk,s

∂t
+ w‖b̂ · ∇θ ∂ ĝk,s

∂θ
+ iV d,s · k∗ĝk,s + N̂k = −eZsF0,s

Ts

(
w‖b̂ · ∇θ ∂

∂θ
+ iV d,s · k∗

)
(J∗

0ϕ̂k)

−iky
c

Br

(
∂F0,s

∂rψ
+ γE

q0Imsw‖
rψ,0BTs

F0,s

)
J∗

0ϕ̂k. (2.14)

In GS2, the nonlinear term N̂k is treated -spectrally: spatial derivatives are computed in
Fourier space; they are then transformed individually to real space, where the nonlinear
term is computed; and the result is transformed back to Fourier space,

N̂k = cq0

rψ,0B2
r

∂ψ

∂rψ

∣∣∣∣
rψ,0

Fk[{g, 〈ϕ〉Rs}x,y], (2.15)

where the Poisson bracket is defined as

{
g, 〈ϕ〉Rs

}
x,y = ∂g

∂x

∣∣∣∣
y

∂〈ϕ〉Rs

∂y

∣∣∣∣
x

− ∂g
∂y

∣∣∣∣
x

∂〈ϕ〉Rs

∂x

∣∣∣∣
y

(2.16)
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and the derivatives are computed as

∂〈ϕ〉Rs

∂x

∣∣∣∣
y

= F−1
x,y [ik∗

x J∗
0ϕ̂k], (2.17)

∂〈ϕ〉Rs

∂y

∣∣∣∣
x

= F−1
x,y [ikyJ∗

0ϕ̂k], (2.18)

∂g
∂x

∣∣∣∣
y

= F−1
x,y [ik∗

x ĝk,s], (2.19)

∂g
∂y

∣∣∣∣
x

= F−1
x,y [ikyĝk,s], (2.20)

with F−1
x,y the inverse discrete Fourier transform to the shearing frame defined by (2.11),

and with Fk the associated forward transform. At this stage, it is worth pointing out that
the Poisson bracket (2.16) is invariant under the transformation from the laboratory frame
(x, y) to the shearing frame (x, y∗). We choose to express the bracket using (x, y), for
reasons that will become clear in § 3.5. The quasineutrality equation in Fourier space
becomes ∑

s

Zs

∫
d3wJ∗

0ĝk,s =
∑

s

Z2
s ens

Ts
(1 − Γ ∗

s )ϕ̂k (2.21)

with Γ ∗
s = (1/ns)

∫
d3wF0,s(J∗

0)
2.

2.5. Parallel boundary condition
Beer et al introduced a parallel boundary condition, often referred to as the
‘twist-and-shift’ boundary condition (Beer et al. 1995). It allows flux tube simulations
with smaller computational domains to be representative of an entire flux surface.

To understand this boundary condition, consider a (φ, x) surface cutting through the
torus, as shown in figure 1(a). While the actual choice in codes for this surface is the
inboard midplane, in this illustration we pick the outboard midplane for simplicity. As
the flux tube wraps around the torus, it periodically intersects with this surface after
every 2π turn in poloidal angle. The periodicity in y∗ implies that fluctuations at such
an intersection with the flux tube can be equivalently described by exact copies of any
other intersection. Here, we consider two consecutive intersections, for example at θ = 0
and θ = 2π (illustrated in figure 1b). For any fluctuating quantity Φ, one must then have

Φ (t, θ = 0, x, y∗ (t, θ = 0, x, φ)) = Φ (t, θ = 2π, x, y∗ (t, θ = 2π, x, φ)) . (2.22)

Notice that, to account for magnetic shear ŝ = (rψ,0/q0) dq/drψ |rψ,0 , the equality holds for
fixed toroidal angle φ, not for fixed field-line label y∗. In Fourier space, (2.22) becomes

Φ̂kx,ky(t, θ = 0) = Φ̂kx+2πŝky,ky(t, θ = 2π) exp
(

−i2πjyq0
2π

Lφ

)
(2.23)

with Lφ = LyBr/(dψ/drψ)|rψ,0 . The extra phase factor can be set to unity by making an
Oρ∗ change in q0 to lie on a flux surface where q02π/Lφ ∈ Z (remembering that jy is an
integer labelling the different ky). In simulations, (2.23) effectively creates twist-and-shift
chains of linked radial wavenumbers.

As we recall above, the parallel boundary condition for flux tubes hinges on
perpendicular periodicity, and hence on the assumption that the box is wider than a
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(a) (b)

FIGURE 1. (a) Sketch of a portion of the x = 0 flux surface; (b) view from the top. In panel (a),
the shaded grey area corresponds to the outboard midplane. Looking down onto this plane from
above in panel (b), the edges of the flux tube are shown in solid blue lines as it intersects with
the plane at θ = 0 and θ = 2π. The dashed blue lines indicate exact copies of the intersection at
θ = 0.

perpendicular correlation length. This in turn means that, for a flux tube to represent a
whole flux surface, the parallel correlation length of fluctuations cannot be larger than 2π
when projected onto θ . In the present work, we always assume that the parallel correlation
length is shorter than 2π, in agreement with Barnes, Parra & Schekochihin (2011b).

3. GS2 algorithm

We showed in § 2 that the presence of flow shear introduces new time dependences in the
Fourier-transformed gyrokinetic and quasineutrality equations. These time dependences
would in principle be straightforward to include in codes that solve for ĝk,s with an explicit
time advance algorithm; the only modification required would be to update the coefficients
V d,s · k∗ and J∗

0 at every time step. Tests conducted with GS2 indicate that this increases
runtime by ∼25 %. However, GS2 uses an algorithm that is implicit in time. Unlike explicit
algorithms, A-stable implicit algorithms have no stability criterion limiting the size of their
time step (known as a Courant–Friedrichs–Lewy, or CFL, condition). They can, therefore,
lead to significant savings in computing time by taking larger time steps. Unfortunately,
this also introduces additional challenges to the numerical treatment of flow shear.

In this section, we present an overview of the implicit algorithm used in GS2, including
a widely used method for treating flow shear in flux tube simulations. We then propose a
new, more accurate approach for treating flow shear.

3.1. Discretised equations
In § 2.5, we stress that the parallel boundary condition (2.23) creates for every ky a set of
linearly independent twist-and-shift chains of connected θ -segments. Here, we use bold
font vector notation to denote discrete arrays whose indices span every (θ, kx) of a single
twist-and-shift chain. Matrices with two such indices are denoted using bold uppercase
letters. The nonlinear term is treated explicitly in time and is irrelevant for the present
section. Therefore, references to the gyrokinetic equation in this section really mean
the gyrokinetic without the nonlinear term. Discretising in time and θ , the gyrokinetic
equation (2.14) can be written schematically as

A∗
n+1ĝn+1 + B∗

nĝn = C∗
n+1ϕ̂n+1 + D∗

nϕ̂n, (3.1)
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with the index n labelling the time step, and where matrices A∗, B∗, C∗ and D∗ are defined
in Appendix A. For simplicity of notation, we suppress indices labelling species, ky, εs and
μs, as well as the one distinguishing twist-and-shift chains. Similarly, the quasineutrality
equation becomes

E∗
n+1ϕ̂n+1 = W ∗

n+1ĝn+1, (3.2)

with E∗ and W ∗ given in Appendix A. Note that W ∗ does not have the same dimensions
as the other matrices since it represents an integration over velocity space. All quantities
at time step n are known, and we wish to solve for ĝn+1 and ϕ̂n+1.

3.2. Overview of the GS2 algorithm
An obvious way to solve the discretised system of equations would be to isolate ϕ̂n+1 in the
quasineutrality equation (3.2), insert the resulting expression into the gyrokinetic equation
(3.1) and find ĝn+1. However, the velocity integration represented by W ∗

n+1 leads to a dense
matrix that would need to be inverted to obtain ĝn+1. As this would be computationally
costly, GS2 uses an alternative method (Kotschenreuther et al. 1995) related to a Green’s
function approach. The general idea is to determine how the distribution function responds
when the potential ϕ̂n is set to zero and the potential ϕ̂n+1 is set to a Kronecker delta in θ
and kx. By doing this for every θ and kx, we will show that one can compute ϕ̂n+1 without
knowing ĝn+1, and then solve the gyrokinetic equation (3.1) for the distribution function.

Since (3.1) is a linear equation, ĝn+1 can be written as a sum of two terms (where ĝold
n+1

only depends on ‘old’ fluctuating quantities from the current time step n, while ĝnew
n+1 also

depends on the ‘new’ potential from time step n + 1)

ĝn+1 = ĝold
n+1 + ĝnew

n+1, (3.3)

which satisfy, respectively,

A∗
n+1ĝold

n+1 + B∗
nĝn = (C∗

n+1 + D∗
n)ϕ̂n (3.4)

and
A∗

n+1ĝnew
n+1 = C∗

n+1ϕ̂
dif
n+1, (3.5)

where ϕ̂
dif
n+1 is defined as the potential difference between the present and the next time

steps,

ϕ̂
dif
n+1 = ϕ̂n+1 − ϕ̂n. (3.6)

Equation (3.4) can be solved directly to find ĝold
n+1 since all other quantities are evaluated

at the previous time step and are, therefore, known. One can then introduce a Green’s
function G∗ such that

A∗
n+1G∗

n+1 = 1. (3.7)

Multiplying from the right by C∗
n+1ϕ̂

dif
n+1, one identifies ĝnew as

ĝnew
n+1 = G∗

n+1C∗
n+1ϕ̂

dif
n+1 ≡

(
δĝnew

δϕ̂
dif

)∗

n+1

ϕ̂
dif
n+1 (3.8)

where we defined the ‘response matrix’ δĝnew
/δϕ̂

dif. The matrix can be computed by
setting ϕ̂

dif
n+1 to a Kronecker delta function in (θ, kx), solving (3.5) for ĝnew

n+1, filling the
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appropriate column of δĝnew
/δϕ̂

dif with this result and iterating for every (θ, kx) in the
connected twist-and-shift chain. In the absence of flow shear, A, B, C, D and G are
independent of time, and one only needs to go through this process once per simulation
(unless the time step size changes).

Inserting expressions (3.6), (3.3) and (3.8) into the discrete quasineutrality equation
(3.2) yields

ϕ̂
dif
n+1 = (M∗)−1

n+1 (W
∗
n+1ĝold

n+1 − E∗
n+1ϕ̂n), (3.9)

with the matrix M∗ defined by

M∗
n+1 = E∗

n+1 − W ∗
n+1

(
δĝnew

δϕ̂
dif

)∗

n+1

. (3.10)

Once (M∗)−1
n+1 is known, ϕ̂n+1 can be obtained from (3.9) and ĝn+1 can then be determined

by solving the full gyrokinetic equation (3.1).

3.3. Challenges in the presence of flow shear
Based on the previous sections, we can identify two important issues appearing in the GS2
algorithm when flow shear is non-zero. First, consider a simulation with a fixed, finite set
of radial wavenumbers kx in the shearing frame. As the simulation advances in time, the
associated wavenumbers in the laboratory frame, k∗

x (t, kx) = kx − kyγEt, would all tend
to ±∞ depending on the sign of γE. In other words, the simulation would eventually
contain only structures that have been highly sheared in the laboratory frame, and would
hence be of little interest for transport studies where structures elongated in the radial
direction (k∗

x ∼ 0) play an important role. The second issue with flow shear is related to the
computational cost of a simulation. As discussed in § 3.2, the response matrix δĝnew

/δϕ̂
dif

required to compute ϕ̂n+1 is independent of time if γE = 0, in which case it has to be
computed only once at the beginning of the simulation, and every time the size of the time
step changes. But if γE �= 0, this matrix becomes time-dependent and would have to be
recomputed at every time step, leading to prohibitively slow simulations.

3.4. Discrete-in-time approach to flow shear
We now describe how the two challenges associated with flow shear for the GS2 algorithm
are addressed by a remapping approach developed by Hammett et al. (2006). This
approach has previously been implemented in GS2 and other gyrokinetic codes including
GENE (Jenko et al. 2000), GKW (Peeters et al. 2009) and CGYRO (Candy & Belli
2018). We then highlight the disadvantages associated with the discrete nature of this
implementation.

To address the issue of modes getting more and more sheared over time in the laboratory
frame, Hammett’s approach uses a wavenumber remapping method (Hammett et al. 2006).
In practice, the Fourier series (2.11) of a fluctuating quantityΦ is truncated to a finite sum.
At t = 0, we have −Kx ≤ kx ≤ Kx and −Ky ≤ ky ≤ Ky. The set of Fourier coefficients
that are being simulated is updated over time, such that −Kx � k∗

x � Kx at all times (i.e.
such that modes radially elongated in the laboratory frame are always included in the
simulation). For each ky there is a corresponding time Tmap(ky) = �kx/

∣∣γEky

∣∣ at which

k∗
x (t + Tmap, kx, ky) = k∗

x (t, kx, ky)∓�kx. (3.11)

From here on, the upper sign will always correspond to γE > 0 and the lower to γE < 0.
In the laboratory frame, Tmap(ky) corresponds to the time required for modes with this
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particular ky to regain radial periodicity on the edges of the box (for a visual illustration
see § 4.2). Over the interval of time Tmap, the most sheared mode in the simulation, Φ̂∓Kx,ky

is considered to shear into structures that are radially fine enough to get averaged out
to a negligible amplitude by the gyromotion of particles; this mode is dropped from the
simulation. Simultaneously, the mode Φ̂±(Kx+�kx),ky has now been unsheared enough to
become of interest and gets added into the simulation with zero amplitude. The Fourier
sum at time t is then given by

Φ(t, x, y∗, θ) =
Ky∑

ky=−Ky

Kx±S(t,ky)�kx∑
kx=−Kx±S(t,ky)�kx

Φ̂k(t, θ) exp(ikxx + ikyy∗), (3.12)

where S(t, ky) is the number of times the simulation has dropped a mode with ky and
added a new one. In the code, the shift in radial wavenumber is triggered every time
k∗

x crosses the midpoint between the two nearest lying n�kx values, with n ∈ Z. This is
implemented by incrementing S at every shift, and by using a ‘remapped’ version of the
Fourier transformed quantities, denoted by a tilde,

Φ̃kx,ky = Φ̂kx±S�kx,ky, (3.13)

where the new Fourier component entering the simulation Φ̃±Kx,ky is set to zero at each
shift.

To address the computing time issue associated with the time dependence of the
response matrix, Hammett’s approach makes a nearest grid point (NGP) approximation
(Hammett et al. 2006): k∗

x (t, kx, ky) � k̄x(t, kx, ky), where

k̄x(t, kx, ky) = kx ∓ S(t, ky)�kx (3.14)

is the n�kx value nearest to the laboratory frame wavenumber k∗
x (t, kx, ky), with n ∈ Z.

The overbar will be used to denote quantities evaluated using the NGP approximation of
the time-dependent laboratory frame wavenumber.

Combined with the wavenumber remapping, the NGP approximation gets rid of all time
dependences due to flow shear in the code, and all star superscripts in §§ 3.1 and 3.2 can
be ignored. Therefore, the response matrix δĝnew

/δϕ̂
dif in this implementation only has to

be computed at initialisation and when the time step size changes, similarly to cases with
γE = 0. As an illustration of the time dependences vanishing, the inverse Fourier transform
of the radial derivative at fixed y of a quantity Φ is given by

∂Φ

∂x

∣∣∣∣
y

=
Ky∑

ky=−Ky

Kx±S(t)�kx∑
kx=−Kx±S(t)�kx

k∗
x (t)Φ̂kx,ky(t) exp(ik∗

x (t)x + ikyy) (3.15)

remap=
Ky∑

ky=−Ky

Kx∑
k̄x=−Kx

k∗
x (t)Φ̃k̄x,ky

(t) exp(ik̄xx + ikyy) exp(i(k∗
x (t)− k̄x)x) (3.16)

NGP�
Ky∑

ky=−Ky

Kx∑
k̄x=−Kx

k̄xΦ̃k̄x,ky
(t) exp(ik̄xx + ikyy), (3.17)

where we explicitly show all time dependences. In the first expression, k∗
x is

time-dependent, and the set of kx is changing over time. In the last expression, the set
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of k̄x values entering the sum is fixed, and all time dependences from flow shear vanish.
However, the NGP will produce two different types of errors in simulations.

First, unphysical, discrete jumps will occur in the linear time evolution of fluctuations,
with a period of Tmap(ky). This effect vanishes in the limit of small spacing in the radial
wavenumber grid, �kx → 0. But it is made worse for cases with weaker flow shear,
where radial wavenumbers in the laboratory frame k∗

x evolve very slowly in time and get
approximated to the same nearest neighbour for a long period of time.

The second type of error associated with the NGP arises when Fourier transforms are
performed, e.g. in the computation of the nonlinear term. A phase factor exp(i(k∗

x − k̄x)x)
is missed by the discrete-in-time approach to flow shear. This can be seen in the example
above, where the phase factor has been approximated to unity to go from (3.16) to (3.17).
This type of error has been stated in McMillan, Ball & Brunner (2019) not to vanish in
the limit�kx → 0. Following this observation, the authors added the missing phase factor
in the gyrokinetic code GENE. One can, however, argue that given that |k∗

x − k̄x| ∼ �kx,
the error at any fixed location in (x, y) should get smaller when �kx is decreased. Errors
at the radial edges of the box would be independent of �kx, since Lx ∼ 1/�kx. But this
should not affect the centre of the domain: two instances of turbulence separated by more
than one correlation length should not influence one another, regardless of whether one
instance suffers from the missing phase factor. This would suggest that the error associated
with the missing exp(i(k∗

x − k̄x)x) factor could be reduced by decreasing �kx, while
only considering the same portion of the simulation domain and ignoring the erroneous
radial edges. A simple test case presented in § 4.2 supports this argument, but nonlinear
gyrokinetic simulations in § 4.3 show a more complicated picture.

The next section will present a new approach to flow shear that removes both types of
errors in a linearly implicit δf gyrokinetic code.

3.5. Continuous-in-time approach to flow shear
We now present an alternative numerical approach for including flow shear continuously
over time, which gets rid of the errors associated with the discrete approach detailed above.

Similarly to the discrete-in-time implementation, we use the wavenumber remapping
method described in the previous section to ensure that modes elongated radially in the
laboratory frame are always included in the simulation.

The first novel idea is to remove time dependences from the implicit part of the
algorithm by evaluating them explicitly in time. In the gyrokinetic equation, (2.14), every
term L [k∗

x

]
Φ̂k that depends on the wavenumber in the laboratory frame can be rewritten

as
L [k∗

x

]
Φ̂k = L [k̄x

]
Φ̂k + (L [k∗

x

]− L [k̄x
])
Φ̂k, (3.18)

where we added and subtracted the same term, evaluated at the nearest n�kx neighbour.
For every term in the discretised gyrokinetic equation (3.1) that is evaluated at the next
time step n + 1, we perform (3.18). The first term L [k̄x

]
Φ̂k is discretised in the usual

implicit way, and hence appears in the implicit part of the algorithm. This term is nothing
but the NGP approximation that was used in the discrete-in-time implementation. In our
new approach, we choose to treat the (L [k∗

x

]− L [k̄x
]
)Φ̂k term explicitly in time; i.e. to

evaluate it at the current time step n. As for the explicit nonlinear term, (2.15), there is an
associated Courant–Friedrichs–Lewy condition that has to be fulfilled for the scheme to
be stable. But the new explicit terms are always small compared with the corresponding
implicit terms since ρ

∣∣k∗
x − k̄x

∣∣ ≤ ρ(�kx)/2 � 1. Hence, the new condition for numerical
stability should be less stringent than the one already set by the nonlinear term. One should
note, however, that if �kx is made large enough (much larger than any sensible choice
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for a nonlinear simulation), this scheme would eventually become unstable. Following
the decomposition (3.18), the time dependences in A and C vanish from (3.4) and (3.5).
Equations (3.7) and (3.8) then yield a time-independent response matrix δĝnew

/δϕ̂
dif.

This decomposition alone does not remove all time dependences from the implicit part
of the code: to compute ϕ̂n+1, one must evaluate the right-hand side of (3.9), where E∗,
W ∗ and (M∗)−1 depend on time. We update E∗ and W ∗ at every time step with little
extra computational cost. The time dependence in the matrix M∗ could be computed
exactly, however, inverting it at every time step would be very costly. Instead, we use
linear interpolation to approximate the time dependence of its inverse (M∗)−1. Note that
while there is a simple dependence of M∗ on time, there is no such simple dependence
for the inverse (M∗)−1. At the beginning of a simulation, we compute three matrices M−1

�

with � = −1, 0,+1, defined, respectively, by replacing all instances of k∗
x in (3.10) with

k̄x + ��kx. Interpolating then gives

(M∗)−1 �
(

1 −
∣∣k∗

x − k̄x

∣∣
�kx

)
M−1

0 +
∣∣k∗

x − k̄x

∣∣
�kx

M−1
sgn(k∗

x −k̄x)
. (3.19)

Notice that we do not interpolate the response matrix δĝnew
/δϕ̂

dif: since it was made
independent of time, each M−1

� contains the same δĝnew
/δϕ̂

dif, and only depends on time
through E∗ and W ∗.

As was argued in McMillan et al. (2019), the implementation of Fourier transforms also
needs to be modified to take into account the continuous time evolution of k∗

x . This has
direct implications for the computation of the nonlinear term (2.15). With the wavenumber
remapping, the discrete inverse Fourier transform (2.11) can be written as

F−1
x,y [Φ̂k] =

Ky∑
ky=−Ky

exp
(
i
(
k∗

x (t, ky)− k̄x
)

xn
)

exp
(
ikyym

) Kx∑
k̄x=−Kx

Φ̃k̄x,ky
exp(ik̄xxn), (3.20)

with xn = nLx/(2Nx + 1), ym = mLy/(2Ny + 1); similarly, for the forward transform,

Fk [Φ] =
Nx∑

n=−Nx

exp
(−i

(
k∗

x (t, ky)− k̄x
)

xn
)

exp
(−ik̄xxn

) Ny∑
m=−Ny

Φ (xn, ym) exp
(−ikyym

)
.

(3.21)

With the NGP approximation made in the discrete-in-time approach, k∗
x is approximated

to k̄x and the first exponential terms in (3.20) and (3.21) are set to unity. In the
continuous-in-time approach, we update the phase factor at every time step and modify
the Fourier transforms in the following way: for F−1

x,y , inverse transform in kx, multiply
by exp(i(k∗

x − k̄x)x) and inverse transform in ky; for Fk, transform in y, multiply by
exp(−i(k∗

x − k̄x)x) and transform in x.

4. Comparison of the approaches with flow shear

In this section, we compare numerical results obtained with the discrete-in-time and
continuous-in-time approaches. We first focus on tests of the modifications made to the
linear GS2 algorithm. We then present a toy case illustrating the changes in the Fourier
transforms and how they can affect the nonlinear term. Finally, a full nonlinear gyrokinetic
simulation of an experiment at the Joint European Torus (known as JET) is shown,
highlighting the impact of this work on simulating turbulent transport in the presence
of flow shear.
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(a) (b) (c)

FIGURE 2. Cartoon illustrating how the wavenumber remapping amounts to moving the
computational domain in θ . Initially (a) the structure is twisted by magnetic shear. Over a period
of time Tmap, flow shear contributes to the twisting, enhancing it at one end and decreasing
it at the other (b). In order to always include radially extended structures in the simulation, the
computational domain is shifted in θ via a wavenumber remap (c). Times: (a) t = 0; (b) t = Tmap
before remap (c) t = Tmap after remap.

4.1. Linear simulations
We first present linear simulations of the widely used ‘CYCLONE base case’ (Dimits et al.
2000), with added flow shear γE = 0.2vth,i/a. Here, a is the half-diameter of the last closed
flux surface at the height of the magnetic axis. As we explain in § 2.5, twist-and-shift
chains of connected radial wavenumbers can be seen as a single ballooning structure,
that can extend in θ by more than 2π. At any given time, this chain corresponds to
a direct-space structure that is twisted along θ by the presence of magnetic shear ŝ
(illustrated by the sketch in figure 2a). Now, if γE �= 0, the background flow shear will
contribute to the twisting, enhancing it at one end in θ and decreasing it at the other
end (figure 2b). After a period of time Tmap, the wave number remapping is applied in
order to retain the radially extended part of the structure in the simulation. As shown in
figure 2(c), this amounts to moving the computational domain in direct space along θ . In
the absence of flow shear, the ballooning mode typically peaks at k∗

x = 0 and θ = 0, where
the mode is aligned with the ∇B, and curvature drives for the ion temperature gradient
instability, and where finite gyroradius stabilisation is weakest. When γE �= 0, it modifies
the twist of the structure, and the peak moves along the field line in θ towards the smallest
k∗

x in the chain. As the peak passes from θ = 0 (bad curvature region) to θ = π (good
curvature region) it experiences a varying growth rate, resulting in a so-called Floquet
mode (Waelbroeck & Chen 1991) (analogous to Bloch states in condensed matter physics).
The Floquet oscillation period of the growth rate is TF = 2πŝ/γE.

To highlight the effects on linear physics of the NGP approximation for radial
wavenumbers, we show the time evolution of the fluctuating electrostatic potential ϕ,
averaged over θ and summed along one particular twist-and-shift chain. In figure 3,
ln(
∑

kx
|〈ϕ̂k〉θ |2) is plotted for several values of the grid spacing in radial wavenumber,

�kx, with 〈·〉θ denoting an average over the poloidal angle. Figure 3(a) shows the
results obtained with the discrete-in-time approach to flow shear, which uses the NGP
approximation. Discrete jumps are generated every time a wavenumber remapping occurs
for this twist-and-shift chain. For fine enough grid spacings, the simulation recovers from
the jumps, and the time-averaged growth rate remains approximately correct. For larger
�kx,however, the simulation fails to capture the correct evolution of the Floquet mode.
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(a)

(b)

FIGURE 3. Time evolution of the normalised electrostatic potential for a single twist-and-shift
chain, summed over the parallel coordinate:(a) discrete-in-time; (b) continuous-in-time.

Figure 3(b) shows the results with the new continuous-in-time approach: it does not
generate any discrete jumps at remaps, and reproduces the correct Floquet behaviour
over a much larger range of �kx than the discrete-in-time algorithm. Note that typical
nonlinear gyrokinetic simulations currently use ρ(�kx) ∼ 0.1. Section 4.3 will show that
our approach to capture the linear physics correctly by avoiding the NGP approximation
can lead to computational savings.

4.2. Test cases for Fourier transforms
We now show two cases that test the changes made to the Fourier transforms in the
continuous-in-time algorithm. The first case highlights the effect on direct-space quantities
when the NGP approximation is being made in Fourier transforms. Given a field Ψ (t, x, y)
with the initial condition Ψ (0, x, y) = cos[2(�k)y], we solve a simple shearing motion in
the laboratory frame

∂Ψ

∂t

∣∣∣∣
x,y

+ γEx
∂Ψ

∂y
= 0, (4.1)
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(a) (b)

(g) (h) (i) ( j)

(e)(c) (d )

( f )

FIGURE 4. Time evolution ofΨ in the laboratory frame, according to (4.1). The discrete-in-time
approach (a–e) does not include the phase factor appearing in Fourier transforms, whereas the
continuous-in-time approach ( f –j) does. Both methods become equivalent at t = T , when the
NGP approximation is exact. The dashed black line corresponds to y∗ = 0 and shows the tilt that
flow shear should be producing.

with the shearing rate γE = 0.2 and �kx = �ky = �k = 0.05. To show the effect
of the NGP approximation on Fourier transforms, this is solved numerically for the
Fourier-transformed Ψ in the shearing frame (x, y∗). In this frame,

∂Ψ̂k

∂t

∣∣∣∣∣
x,y∗

= 0, (4.2)

so the only operation we have to apply at every time step is the wavenumber remapping
described in § 3.4, followed by an inverse Fourier transform to visualise Ψ in direct space.
In the discrete-in-time approach, the transform is given by (3.20) without the first phase
factor. In the continuous-in-time approach, the phase factor is included. The time evolution
obtained with each approach is shown in figure 4 for t ∈ [0,T], where T is the time
required for k∗

x (t) to change from 0 to −�kx. The correct shearing motion is indicated
by the line y∗ = 0. Until the first remap, i.e. t < T/2, the discrete-in-time approach can
be seen to lag behind the correct shearing motion (k̄x remains 0). After the remap (k̄x has
now jumped to −�kx), it is ahead of the correct motion, until both coincide again at t = T
(i.e. when k̄x = k∗

x ). In the continuous-in-time approach, the exact time evolution of k∗
x

is included in the Fourier transform, and the numerical result coincides with the correct
shearing motion at all times.

Our second case illustrates the effect of the NGP approximation in Fourier transforms,
in the presence of a nonlinear term. In this test case, the NGP approximation becomes
exact when t = n/γE, with n = 0, 1, 2, . . .; i.e. at those times, k̄x(T, kx, ky) = k∗

x (T, kx, ky)

for every kx and ky in the simulation, and Fourier transforming is equivalent in both the
discrete- and continuous-in-time approaches. At t �= n/γE, however, Fourier transforming
in the discrete-in-time approach will produce errors in the nonlinear term. We will
now show that those errors can accumulate over time, and alter the time-evolution
of the simulation. For our test, we consider two fields, Ψ (t, x, y) and Φ(t, x, y), with
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initial conditions

Ψ0(x, y) = cos[2(�k)y], (4.3)

Φ0(x, y) = C
σ 2

exp(−(x2 + y2)/(2σ 2)) (4.4)

and with �kx = �ky = �k = 0.025, Nx = 467, Ny = 234, C = −105 and σ = 5π. We
suppose that their respective time evolution is given by

∂Ψ

∂t

∣∣∣∣
x,y

+ γEx
∂Ψ

∂y
+ {Ψ,Φ}x,y = 0, (4.5)

∂Φ

∂t

∣∣∣∣
x,y

+ γEx
∂Φ

∂y
= 0. (4.6)

The analytical solution for Ψ can be computed as being

Ψ (t, x, y) = cos
[
2(�k)Y(t, x, y)

]
, (4.7)

where we defined Y(t, x, y) = y∗ cos(Φ0t/σ 2)− x sin(Φ0t/σ 2). Numerically, (4.5) and
(4.6) are solved in Fourier space, and the Poisson bracket is computed pseudo-spectrally.
Note that the maximum amplitude of the analytical solution is |Ψ | = 1.

In figure 5(a–e), we plot the analytical solution (4.7) over a time period T = 1/γE. We
indicate with dots areas of the box where analytical and numerical results should not be
compared, because the numerical solution is periodic in x and y, while the analytical one
is not. In figure 5( f –j), we show the difference |�Ψ | = |Ψnum − Ψ | between the analytical
solution and the numerical result, obtained with the discrete-in-time algorithm. Although
the numerical solution looks more correct at t = T/2 (when the NGP approximation is
exact for half of the values of ky) and t = T (when it is exact for all values of ky), errors
in the pseudo-spectral computation of the Poisson bracket at 0 < t < 1/γE have altered
the time-evolution of the simulation. In figure 5(k–o), we see that the continuous-in-time
approach deviates from the analytical solution by less than 0.01 at any time, compared
with differences of up to 1.4 observed with the discrete-in-time scheme.

Finally, figure 6 illustrates how the error |�Ψ | is affected when �k is reduced. A
smaller �k (i.e. a larger simulation domain) does not alter the pattern or the maximum
amplitude of the error produced by the missing phase factor. It does, however, reduce the
error within the original simulation domain. This simple test case, therefore, suggests that
the error from the missing phase factor in local gyrokinetic codes would not vanish when
simply reducing �kx, which agrees with the observations made in McMillan et al. (2019).
This would also suggest that to make this error vanish, only the original portion of the
simulation domain should be considered, while simultaneously reducing �kx. We find in
§ 4.3 that nonlinear simulations do not seem to agree with this last point.

4.3. Nonlinear simulations
Having validated the implementation of the continuous-in-time approach in §§ 4.1 and
4.2, we now present nonlinear, electrostatic gyrokinetic simulations performed with the
local code GS2. They show that our new approach to flow shear can lead to computational
savings compared with the discrete-in-time approach, and that differences in fluxes can
persist if Fourier transforms are not evaluated correctly when computing the nonlinear
term of the gyrokinetic equation. The plasma parameters (presented in table 1) are taken

https://doi.org/10.1017/S0022377821000453 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000453


Continuous-in-time algorithm for flow shear 17

(a) (b) (e)(c) (d )

( f ) (g) ( j)(h) (i)

(k) (l) (o)(m) (n)

FIGURE 5. Analytical solution to (4.5) and (4.6) for Ψ , and comparison with numerical
solutions obtained with the discrete- and continuous-in-time approaches. At t = T , the NGP
approximation is exact, making both approaches equivalent for that time step. (a–e) Analytical
time evolution of Ψ ; ( f –j) |�Ψ | = |Ψnum − Ψ |, using the discrete-in-time approach; (k–o)
|�Ψ | = |Ψnum − Ψ |, using the continuous-in-time approach.

from the JET discharge #68448 for which a substantial part of the heating was provided
by neutral beam injection. The data for this discharge is documented in the JETPEAK
database (Siren et al. 2019). The simulations include two kinetic species (deuterium ions
and electrons), numerical hyperviscosity (Belli 2006) and collisions.

For a species s, the turbulent heat flux Qs is given by

Qs =
〈∫

d3v
msv

2

2
δfsV E · ∇ψ

〉
ψ

, (4.8)

where 〈·〉ψ denotes a volume average over the flux tube. Figure 7 shows how Qi differs
in simulations using the new continuous-in-time approach to flow shear, compared with
simulations with the discrete-in-time approach. In figure 7(a), �kx is the only parameter
that is being changed (along with the number of kx so as to keep the maximum wavenumber
fixed). It can be seen that the two approaches to flow shear do not converge to the
same heat flux. In this particular case, the value from the continuous-in-time method
is lower by approximately 20 %. A simulation was performed by only adding the phase
factor to the discrete-in-time approach (blue cross at Lx ∼ 150ρi), and another simulation
was performed by removing the phase factor from the continuous approach (red dot at
Lx ∼ 150ρi): both clearly show that it is this phase factor that explains the difference in
convergence, and that the changes to the linear parts of the code have little impact at large
Lx (as one would expect from § 4.1). At lower values of Lx in figure 7(a), the main result
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(a) (b)

(c) (d )

FIGURE 6. Here |�Ψ | = |Ψnum − Ψ | for the nominal �kx and for �kx halved, with both
discrete- and continuous-in-time approaches. (a) Discrete-in-time, �kx = 0.025. Identical to
t/T = 0.25 in figure 5( f –j). (b) Discrete-in-time,�kx = 0.0125. (c) Continuous-in-time,�kx =
0.025. Identical to t/T = 0.25 in figure 5(k–o). (d) Continuous-in-time, �kx = 0.0125.

is that the continuous-in-time approach stays closer to its converged value for smaller box
sizes than the discrete approach. This agrees with the results of figure 3 which show that
the continuous algorithm is able to reproduce the linear physics correctly with a larger�kx
(smaller Lx) than the discrete-in-time approach. A simulation was performed by adding
the phase factor to the discrete-in-time approach (blue cross at Lx ∼ 20ρi), and another
simulation was performed by removing the phase factor from the continuous approach
(red dot at Lx ∼ 20ρi): they indicate that, at small Lx, the changes to the linear parts of
the code can play a bigger role than the error from the missing phase factor. Surprisingly,
we note that the phase factor appears to have almost no impact in the simulations with
Lx ∼ 20ρi, unlike at Lx ∼ 150ρi. At Lx ∼ 20ρi, we observe that the size of the simulation
domain is becoming comparable to the radial extent of the eddies. And from figure 6,
we know that the error from the missing phase factor is strongest at the radial edges of
the simulation. When the box is small enough, we, therefore, expect the missing phase
factor to be unable to substantially affect a whole eddy: only the parts of the eddy that
are close to the radial edges of the box are strongly impacted. In contrast, when the box
becomes larger, entire eddies are affected by the phase factor. However, additional work
would be needed to determine if this could explain why simulations with smaller boxes are
less affected by the phase factor. Figure 7(b) is meant to highlight the cases with smaller
Lx. The fluxes are this time plotted against Tmap(ky)/TF, that is the number of wavenumber
remappings that occur per Floquet period (meaning that the smallest Lx is now on the right
of the figure). Next, Tmap is evaluated at the wavenumber ky with the largest amplitudes in
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Ip 2.6 MA Plasma current
BT 2.9 T Vacuum toroidal field on axis
PNBI 17 MW Neutral beam heating power
Rψ 3.06a [max(R)+ min(R)]/2 for this flux surface
rψ 0.508a [max(R)− min(R)]/2 for this flux surface
|q0| 1.43 flux-surface averaged safety factor
ŝ 0.574 flux-surface averaged magnetic shear
κ 1.36 Miller elongation (Miller et al. 1998)
dκ/drψ 0.146/a elongation gradient
δ 0.0571 arcsin of Miller triangularity (Miller et al. 1998)
dδ/drψ 0.129/a gradient of GS2 triangularity
γE −0.063vth,i/a background flow shear rate
Ωφ −0.08vth,i/a background flow angular frequency
ni/ne 1.0 ion to electron density ratio
1/Lni 0.602/a inverse ion density gradient length
1/Lne 0.602/a inverse electron density gradient length
Te/Ti 0.855 electron to ion temperature ratio
1/LTi 1.759/a inverse ion temperature gradient length
1/LTe 1.551/a inverse electron temperature gradient length
νii 2.6 × 10−4vth,i/a ion collisionality
νee 0.02vth,i/a electron collisionality
Lx 77.5ρi box size in x
Ly 69.8ρi box size in y
Kx 3.49/ρi largest radial wavenumber
Ky 0.99/ρi largest wavenumber in y
Nθ 33 number of θ grid points
Nε 16 number of εs grid points
Nλ 27 number of pitch angles

TABLE 1. Simulation parameters for the JET discharge #68448. The gradient length of any
quantity Q is given by LQ = 1/[d log(Q)/drψ ].

the simulation. All the points are identical to those on the previous figure, except for those
in square boxes for which both �kx and �ky were changed (again, keeping the maximum
wavenumbers fixed). The conclusions are the same as for figure 7(a).

It is interesting to note that the exact mechanism through which the added phase factor
decreases the converged heat flux remains unclear. The only notable difference when
adding the phase is that the amplitude of the box-scale zonal mode (kx = �kx, ky = 0)
decreases, as is illustrated by figure 8. We previously showed in figures 6(a) and 6(b)
that omitting the phase factor produces errors that are larger at the radial edges of the
simulation domain. However,it is not yet clear how this error relates to the box-scale zonal
mode, and how this mode might affect the level of transport observed in simulations.

Unlike what was suggested at the end of § 4.2, our simulations seem to indicate that
considering only a smaller subset of a large simulation domain does not reduce the error
from the missing phase factor. One could have imagined turbulent fluctuations in the
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(a)

(b)

FIGURE 7. Turbulent heat flux, plotted for different �kx in panel (a), and for different
Tmap(ky)/TF in panel (b) (where ky is the wavenumber with the largest amplitudes). All points
in panels (a,b) are identical, except for the ones highlighted by square boxes, for which both�kx
and �ky were modified.

(a) (b)

FIGURE 8. Amplitude of the electrostatic potential for the box-scale zonal mode in solid black
and for the dominant non-zonal mode in dashed red. (a) Discrete approach, no phase factor. (b)
Continuous approach with phase factor.
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absence of the phase factor setting up a region in the middle of the box where, on average
over time, flow shear is reduced or the temperature gradient is substantially enhanced.
However, we observe neither of these two cases. Further work would be needed to confirm
whether a different turbulent heat diffusivity χi = −Qi/(dTi/drψ) is indeed obtained with
and without phase factor. The diffusivity would have to be averaged over time and space
for small subsets of the computational domain.

The implementation of the continuous-in-time approach can have an impact on
computational costs in two ways. Firstly, the additional flexibility in the choice of�kx with
the continuous approach can lead to substantial computational savings. In the nonlinear
simulations presented here, the discrete-in-time approach needs Tmap/TF ∼ 0.12 to remain
converged, whereas the continuous approach is still roughly fine at Tmap/TF ∼ 0.18. This
corresponded to a 46 % decrease in computing time. Secondly, the continuous approach
requires three large matrices to be inverted at initialisation or when changing the time step.
The discrete approach only requires a single matrix inversion. In theory, this could increase
the computing time by up to a factor of three if a simulation were to require its time step to
change very often. In practice, however, the time step typically changes only a few times
throughout a simulation. In the many simulations we have carried out with the continuous
approach, the need for three matrix inversions has never increased the computing time by
more than 25 %, and the typical increase is around 15 %.

Lastly, while the converged fluxes for this JET discharge differ significantly between the
discrete and continuous approaches, it is important to stress that this would by no means
be the case for every nonlinear simulation that includes flow shear. In fact, the majority
of simulations that we have performed so far yield the same fluxes with both approaches,
provided �kx is small enough.

5. Conclusions

In this work, we presented a new approach to flow shear for linearly implicit, local
δf gyrokinetic codes. This method treats flow shear continuously over time, unlike
the widely used, discrete-in-time approach developed by Hammett et al. (2006). The
main complication resides in the response-matrix approach adopted by codes with an
implicit-in-time linear algorithm: when γE �= 0, this matrix becomes time dependent and
it is prohibitively expensive to recompute it at every time step. In the discrete-in-time
approach to flow shear, this time dependence was approximated by combining an
NGP approximation for radial wavenumbers, together with a wavenumber remapping
procedure. In the new approach to flow shear, a decomposition of terms allows the
time dependences in the linear gyrokinetic equation to be treated explicitly in time,
without further restricting the time step size. Additionally, time dependences arising in
the quasineutrality equation are approximated by linear interpolation, and Hammett’s
remapping in wavenumber is applied without NGP approximation. Following these steps
leads to an implicit-in-time linear algorithm, where flow shear is included continuously
in time, and for which response matrices only need to be computed during initialisation.
Finally, the pseudo-spectral evaluation of the nonlinear term also requires modifications
to take into account the time dependence of the radial wavenumber, as has been argued in
McMillan et al. (2019).

We implemented this new approach in the GS2 code, and showed numerical simulations
that validate the changes made to both linear and nonlinear parts of the code. Linearly, the
discrete-in-time approach produces discontinuous jumps at every remap in wavenumber,
and it fails to reproduce Floquet oscillations when the grid spacing in radial wavenumber
becomes too large. The continuous-in-time approach produces no such jumps, and is able
to capture the correct Floquet behaviour for a wider range of resolutions in wavenumber.
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For the nonlinear term, a first test case illustrates the errors in real space quantities when
an NGP approximation is made in Fourier transforms, and how the continuous-in-time
approach gets rid of those errors by including a phase factor. A second test case shows the
impact of these errors when the equations for time evolution include a pseudo-spectrally
computed Poisson bracket: the discrete-in-time approach accumulates errors from the NGP
approximation, while the continuous-in-time approach correctly reproduces the expected
analytical result. Finally, nonlinear gyrokinetic simulations of a JET discharge demonstrate
that the continuous and discrete approaches can, in some cases, lead to a different
converged value for the turbulent heat flux (20 % difference in this example). However,
for the majority of nonlinear simulations that we have performed with flow shear, the two
methods yield essentially identical fluxes. It was also shown that the continuous approach
can lead to substantial computational savings by allowing for radially narrower boxes
(46 % decrease in computing time for this example). When using the same box size, the
continuous implementation is somewhat slower than the discrete algorithm (∼15 % slower
for cases in the example presented here, and at most 25 % in all simulations performed so
far).
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Appendix A

In this section, we present how the system of gyrokinetic and quasineutrality equations
is discretised in GS2. The discretisation in time and poloidal angle θ can be modified via
the parameters rt and rθ ,respectively. The user can set rt between zero (fully implicit linear
scheme) and one (fully explicit scheme). Similarly, rθ can be set between zero (centred in
θ ) and one (upwinding in θ ). The discrete indices used in this work are defined in table 2.
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Time 0 ≤ n ≤ Nt tn = n�t
Poloidal angle −(Nθ − 1)/2 ≤ jθ ≤ (Nθ − 1)/2 θjθ = jθ�θ
Radial wavenumber −(Nx − 1)/2 ≤ jx ≤ (Nx − 1)/2 k̄x,0 = jx�kx

Wavenumber in y∗ 0 ≤ jy < Ny ky,jy = jy�ky

Twist-and-shift chain 0 ≤ jc < 2πŝky/(�kx) chain ↔ ( jy, jc)
Along a chain j = jθ + Nθ ( jx − jc)/(2πŝky) all (θ, kx) in a chain

TABLE 2. Indices used in discrete notations.

With these definitions, the time derivative of any fluctuating quantity Φ is approximated
by

∂Φ

∂t
≈ 1 + σ rθ

2
Φn+1,jθ+1 −Φn,jθ+1

�t
+ 1 − σ rθ

2
Φn+1,jθ −Φn,jθ

�t
, (A 1)

where σ is the sign of v · b̂. Similarly, derivatives in θ are approximated by

∂Φ

∂θ
≈ (1 − rt)

Φn+1,jθ+1 −Φn+1,jθ

�θ
+ rt

Φn,jθ+1 −Φn,jθ

�θ
(A 2)

and all other terms are approximated by

Φ ≈ 1 − σ rθ
2

(
rtΦn,jθ + (1 − rt)Φn+1,jθ

)+ 1 + σ rθ
2

(
rtΦn,jθ+1 + (1 − rt)Φn+1,jθ+1

)
.

(A 3)

We now use bold-font vector notation for the potential and distribution function, to
denote discrete arrays whose indices span every (θ, kx) of a single twist-and-shift chain.
Matrices with two such indices are denoted using bold uppercase letters. With this
notation, discretising the gyrokinetic equation (2.14) according to (A 1), (A 2) and (A 3)
yields

A∗
n+1ĝn+1 + B∗

nĝn = C∗
n+1ϕ̂n+1 + D∗

nϕ̂n, (A 4)

where we have defined the matrices

A∗
n+1,j,j′ = 1

�t

(
1 + σ rθ

2
δj+1,j′ + 1 − σ rθ

2
δj,j′

)
(A 5)

+ (1 − rt)w‖b̂ · ∇θ 1
�θ

(
δj+1,j′ − δj,j′

)
(A 6)

+ i(1 − rt)

(
1 + σ rθ

2
V d,s,jθ+1 · k∗

n+1,j+1δj+1,j′ (A 7)

+1 − σ rθ
2

V d,s,jθ · k∗
n+1,jδj,j′

)
, (A 8)

B∗
n,j,j′ = − 1

�t

(
1 + σ rθ

2
δj+1,j′ + 1 − σ rθ

2
δj,j′

)
(A 9)

+ rtw‖b̂ · ∇θ 1
�θ

(
δj+1,j′ − δj,j′

)
(A 10)
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+ irt

(
1 + σ rθ

2
V d,s,jθ+1 · k∗

n,j+1δj+1,j′ + 1 − σ rθ
2

V d,s,jθ · k∗
n,jδj,j′

)
, (A 11)

C∗
n+1,j,j′ = −eZsF0,s

Ts
w‖b̂ · ∇θ 1

�θ
(1 − rt)

(
J∗

0,n+1,j+1δj+1,j′ − J∗
0,n+1,jδj,j′

)
(A 12)

− i
eZsF0,s

Ts
(1 − rt)

(
1 + σ rθ

2
V d,s,jθ+1 · k∗

n+1,j+1J∗
0n + 1, j + 1δj+1,j′ (A 13)

+1 − σ rθ
2

V d,s,jθ · k∗
n+1,jJ

∗
0,n+1,jδj,j′

)
(A 14)

− iky
c
Br

(
∂F0,s

∂rψ
+ γE

q0Imsw‖
rψ,0BTs

F0,s

)
(1 − rt) (A 15)

·
(

1 + σ rθ
2

J∗
0,n+1,j+1δj+1,j′ + 1 − σ rθ

2
J∗

0,n+1,jδj,j′

)
, (A 16)

D∗
n,j,j′ = −eZsF0,s

Ts
w‖b̂ · ∇θ 1

�θ
rt
(
J∗

0,n,j+1δj+1,j′ − J∗
0,n,jδj,j′

)
(A 17)

− i
eZsF0,s

Ts
rt

(
1 + σ rθ

2
V d,s,jθ+1 · k∗

n,j+1J∗
0,n,j+1δj+1,j′ (A 18)

+1 − σ rθ
2

V d,s,jθ · k∗
n,jJ

∗
0,n,jδj,j′

)
(A 19)

− iky
c
Br

(
∂F0,s

∂rψ
+ γE

q0Imsw‖
rψ,0BTs

F0,s

)
rt

(
1 + σ rθ

2
J∗

0,n,j+1δj+1,j′ (A 20)

+1 − σ rθ
2

J∗
0,n,jδj,j′

)
. (A 21)

Finally, the quasineutrality equation, (2.21), is evaluated at time step n + 1 and written in
the discrete form

E∗
n+1ϕ̂n+1 = W ∗

n+1ĝn+1, (A 22)

where we have defined the matrix

E∗
n+1,j,j′ =

∑
s

e2Zsns

Ts

(
1 − Γ ∗

s,n+1,j

)
δj,j′ . (A 23)

The velocity-space integral operator W is defined such that, for any function Φ,

W ∗
n+1,j,j′Φ =

∑
s

Zs

∫
d3wJ∗

0,n+1,jδj,j′Φ. (A 24)
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