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ABSTRACT

The formation of density corrugation due to zonal flow, so-called zonal staircase, is investigated theoretically, based on the wave-kinetic
framework. The wave-kinetic simulation is performed, considering the profile corrugation and the turbulence trapping mechanism, where
the profile corrugation changes the growth rate and the dispersion relation of turbulence. The zonal density is generated by the modulation
of particle transport. We obtain the analytical expression for the zonal density, which determines the staircase height. It is found that the
amplitude normalized by the ambient density can be comparable to the zonal flow normalized by the diamagnetic drift velocity. The key
effect that determines the turbulence profile is found to be the phenomenon of turbulence trapping by zonal flow, while the profile corruga-
tion due to zonal density has weaker effects. Thus, turbulence is localized where the flow curvature is negative, which leads to a flattening of
the density profile through the enhancement of particle transport. This fact clearly shows that the effect of turbulence trapping dominates
the density gradient dependence of the local linear instability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055777

I. INTRODUCTION

The formation of staircase-like profile corrugations is universal in
fluid phenomena such as fusion plasmas, oceans, and atmosphere.1–3

In magnetically confined plasmas, the staircases have been observed in
the fluid turbulence model4 and gyro-kinetic simulations3,5–8 for vari-
ous turbulence modes such as ion temperature gradient mode and
trapped electron mode. Staircases in many cases have been found to
accompany the formation of perpendicular flows (E�B and zonal
flow). In recent experiments, highly accurate profile measurement
methods have been developed, and staircases with the coexistence of
flows have been reported.9–12 A theoretical understanding of staircase
formation due to the interaction of turbulence and flows is of great
importance.

Staircase formation is a result of profile corrugations; thus, the
interaction between turbulence and zonal flows as well as the profile

relaxation processes should be considered simultaneously. In the pro-
cess of the turbulence–zonal flow interactions, turbulence trapping by
zonal flow has been found to play a crucial role in determining the
spatial distribution of the phenomenon of turbulence.13–16 Here, tur-
bulence trapping appears as a dynamic effect in phase space, where the
phase space consists of the real and wavenumber spaces, and thus the
wave-kinetic theory is suitable to consider this process. Actually, asym-
metric turbulence intensity with respect to the sign of flow curvature,
which is characteristic of turbulence trapping, has been observed in
several turbulence simulations.5,17 On the contrary, the theoretical
model for the staircases based on the jam of the turbulence avalanche18

has been reported19 without considering the interaction with the flow,
explicitly. The zonal flow effect has been included in Ref. 20 for a stair-
case analysis based on the mixing length theory, which is not enough
to consider the phase space dynamics of turbulence.
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In this study, the zonal-staircase formation is investigated by con-
sidering the phase space dynamics (turbulence trapping mechanism),
based on a wave-kinetic framework. The self-consistent simulation is
performed, where the profile relaxation and turbulence–zonal flow
interaction are simultaneously included. It is shown that turbulence
trapping is significant for the spatial structures of zonal staircases. An
analytical expression for the zonal-staircase height is also obtained.
The rest of this paper is organized as follows. In Sec. II, the model is
introduced. The results of the wave-kinetic simulation are described,
and the obtained zonal staircases are theoretically studied in Sec. III. A
summary is presented in Sec. IV.

II. MODEL

In this study, we consider a magnetized plasma with an inhomo-
geneous density background. The magnetic field and density gradient
are chosen to lie along the z and x directions, respectively. The normal-
izations of space and time are as follows:

t ! csL
�1
n t; (1)

x! q�1s x; (2)

where cs is the speed of sound, and Ln is the density scale length. As
for physical quantities, the density, electrostatic potential, and velocity
are normalized as follows:

N ! ðLnq�1s ÞN; (3)

/! ðLnq�1s Þe/=Te; (4)

V ! ðLnq�1s ÞV=cs: (5)

In this normalization, the background density gradient is given by
@xN0 ¼ �1.

As fundamental processes, we focus on the formation of zonal
flows and the associated transport modulations through the interac-
tion of turbulence in phase space. The key processes are summarized
in Fig. 1. The evolution equations for the action of turbulence, zonal
density, and the zonal flow are given as follows:

@t Ik þ vg@xIk � @xxk@kx Ik ¼ cLIk � DxI2k ; (6)

@t �N 0 ¼ �@2xCx þ ln@
2
x

�N 0; (7)

@t �Vy ¼ �@xPxy þ �@2x �Vy : (8)

where Ik is the action of turbulence defined as Ik ¼ ð1þ k2?Þ
2j/kj2; �N

is the normalized zonal density, and �Vy is the zonal flow. It is noted

that the action of turbulence Ik does not contain any phase informa-
tion and reflects the envelope of turbulence. Here, the spatial derivative
is denoted by X0, where X is an arbitrary physical quantity. The non-
linear damping of turbulence is denoted by Dx, and the dissipation
coefficients for the density and flow are given by ln and �, respectively.
The drift wave turbulence is assumed in this study, so that the turbu-
lence dispersion relation xk, the group velocity vg, and the growth rate
cL are given as follows:

xk ¼
kyð1� �N 0 þ �Vy

00Þ
ð1þ k2?Þ

þ kyVy; (9)

vg ¼ �
2kxky
ð1þ k2?Þ

2 1� �N 0 þ �Vy
00

� �
; (10)

cL ¼
k2y

Cð1þ k2?Þ
3 k2? 1� 2�N 0ð Þ � 1� k2?

� �
�Vy
00

n o
: (11)

Here, the presented turbulence dispersion properties can be systemati-
cally derived from the Hasewaga–Wakatani model near the adiabatic
limit. The effects of the zonal density are self-consistently introduced
on the modifications of the turbulence dispersion relation. The quasi-
linear turbulent fluxes for particles and momentum can be written as
follows:

Cx ¼
ð k2y
Cð1þ k2?Þ

3 k2?ð1� �N 0Þ � �Vy
00

n o
Ikd

2k; (12)

Pxy ¼ �
ð

kxky
ð1þ k2?Þ

2 Ikd
2k: (13)

Here, C denotes a parameter that depends on the collisionality; when
one considers a resistive drift wave, C is given as C ¼ Dk2k (D is the
parallel electron diffusion coefficient and kk is the parallel wavenum-
ber), and when one assumes the trapped electron mode, C is given as
C ¼ �e=

ffiffi
�
p

(�e is the electron collision frequency and � is the inverse
aspect ratio). The particle flux includes the effect of zonal field, which
stems from the modulation of cross-phase between the particle and
potential fluctuations, and whose expression can be derived from the
Hasegawa–Wakatani model within the framework of the quasi-linear
theory.

The presented set of model equations are based on the following
assumptions: (1) the wave-kinetic assumption used to derive these
model equations requires that the scales of the dynamical variables
(the action of turbulence, density, and flow) are much longer than the
radial eddy correlation length, which is of order 1 in these normalized
equations—thus qx � 1 is necessary; (2) the phase difference between
the density and potential in turbulence fluctuation is small, C � 1;
and (3) turbulence spreading, which stems from the nonlinear diffu-
sion of turbulence, is ignored. The model includes the higher order
spatial derivatives for zonal fields as given in Refs. 21 and 22, and the
zonal density effect only for the first order effect. The basis of the treat-
ment of zonal density in the wave-kinetic framework is given in Ref.
23. Here, when one neglects the effects of the zonal field on the disper-
sion relation and the group velocity, and the second order spatial
derivative terms in the growth rate, the model equations agree with
those in Ref. 23. When one ignores the zonal density, the model corre-
sponds to that in Refs. 21 and 22. The model in this study is a natural
extension of the previous ones.

FIG. 1. Schematic view of processes this study focused on: phase space dynamics
of turbulence and the formation of zonal flow and density corrugation.
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III. WAVE-KINETIC SIMULATION FOR ZONAL
STAIRCASE
A. Simulation settings

The model equations given by Eqs. (6)–(8) are numerically solved
with the finite difference method, keeping the dynamics in the phase
space ðx; kxÞ. For the real space x, the periodic boundary condition is
used, and Neumann-type boundary conditions are chosen for the
wavenumber space, where the derivatives of Ik with respect to kx are
set to zero at the boundary. The simulation is performed with the fol-
lowing parameters: C ¼ 10; ky ¼ 1;Dx ¼ 0:01;ln ¼ 0:05; � ¼ 0:05.
A spatially homogeneous turbulence spectrum with a small amplitude
perturbation for the zonal field is introduced as an initial condition,
the time evolutions of Ik; �N , and �Vy are calculated.

B. Properties of zonal staircases

In this subsection, the numerical results of the wave-kinetic simu-
lation are shown; the spatiotemporal evolution of turbulence and zonal
field is presented. Then, the theoretical basis for the zonal density is
discussed.

The time evolution of the turbulence and zonal field energy is
illustrated in Fig. 2, where the turbulence and zonal kinetic/thermal
energies are, respectively, defined as follows:

E ¼
ð
ð1þ k2?Þ

�1Ikd
2k; (14)

Ek ¼
1
2

ð
�Vy

2dx; (15)

EN ¼
1
2

ð
�N 2dx: (16)

Initially, the action of turbulence is given as Ikðt ¼ 0Þ ¼ cL=Dx,
which is homogeneous in space, as seen in the bottom left panel in
Fig. 2. As seen in the top panel of Fig. 2, the zonal flows grow faster
than the zonal density, and eventually they saturate with finite ampli-
tudes. The magnitude of zonal density can be seen to be comparable to
that of the zonal flow. The bottom panel of Fig. 2 shows snapshots of

the phase space pattern of the action of turbulence. The action of tur-
bulence Ik forms island structures in the phase space when the zonal
field has a finite amplitude, which is a consequence of turbulence trap-
ping.13–15,24 The excited zonal flow is a low frequency zonal flow; so, it
does not show any spatial propagation. Although turbulence have a
property to propagate in space with the group velocity presented in
Eq. (10), the zonal flow modifies the wavenumber kx to change the
propagation direction and the turbulence is trapped where the zonal
flow curvature is negative13,25 (for the details, see Appendix). Due to
turbulence trapping, the spatial relationships among them holds in the
whole period of saturated states.

The time evolution of spatial distributions of the turbulence and
zonal fields is shown in Fig. 3. The turbulence intensity, the zonal flow,
and zonal density gradient have their maxima at nearly the same posi-
tion. The peaks of turbulence and zonal field do not propagate. In
order to clarify the spatial relationships between zonal flow and den-
sity, snapshots of the zonal field and the density profile are illustrated
in Fig. 4. As a reference, the phase space pattern of the action of turbu-
lence is shown in the top panel, where the white curve in the contour
shows the zonal flow pattern. The zonal flow and zonal density are
shown in the middle, and the density profile in which the zonal density
is superposed is shown in the bottom. We can see that the phase differ-
ence of the zonal density and zonal flow is around p=2. The gradient
of zonal density is positive where the zonal flow has a positive peak,
which corresponds to density flattening.

The analytical expression for zonal density is considered in order
to understand the spatial relations described above. The zonal density
can be evaluated from Eq. (7) by neglecting the time derivative as

�N 0 � l�1n Cx: (17)

Thus, the analytical expression for �N 0 is given by

�N 0 ¼ 1
lnC

1þ 1
lnC

ð k2yk
2
?

ð1þ k2?Þ
3 Ikd

2k

" #�1 ð k2yk
2
?

ð1þ k2?Þ
3 Ikd

2k

"

�
ð k2y
ð1þ k2?Þ

3 Ikd
2k �Vy

00
#
: (18)

FIG. 2. Upper panel: The time evolution of
the energies of turbulence and the zonal
fields. The kinetic and thermal energies of
zonal fields (Ek, EN) are calculated from

Ek ¼ 2�1
Ð

�V
2
ydx and EN ¼ 2�1

Ð
�N
2
dx,

respectively. Bottom panel: Snapshots of
the action for turbulent flows Ik in the
phase space at t¼ 1, 100, and 600.
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Here, the second term in the first bracket (density modulation effect)
and the second term in the second bracket (flow curvature effect) stem
from the modulation of phase difference between the density and
potential in turbulence fluctuation. These terms represent the higher
order effect of the zonal field under the assumption of C � 1 and
qx � 1. The fundamental effect for the drive of the zonal density is
the amplitude modulation of turbulence fluctuation, so the zonal den-
sity can be approximated by

�N 0 � 1
lnC

ð k2yk
2
?

ð1þ k2?Þ
3 Ikd

2k: (19)

It is found that the spatial structure of the zonal density gradient agrees
with that of turbulence, which captures the characteristics obtained in
the simulation shown in Figs. 3 and 4. This can be understood as fol-
lows. The turbulence-driven particle flux becomes large in the region
where the turbulence is strong, and thus density flattening (the positive
density gradient) occurs there, which corresponds to the zonal density.
Because of turbulence trapping, the turbulence is accumulated where
the curvature of the zonal flow is negative. Therefore, the spatial rela-
tionships among zonal field and turbulence can be summarized as
follows:

sgn �N 0ð Þ � sgn �Vy
� �

� �sgn �Vy
00

� �
; (20)

sgn �N 00ð Þ � sgn �Vy
0

� �
: (21)

These relations hold when the zonal flow has sufficient amplitude for
turbulence trapping.

The parameter dependence of the zonal staircase height is dis-
cussed. For Eq. (19), the integral in the wavenumber space is evaluated

from the turbulence trapping width Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2yq

2
x

�Vy=ð1þ k2yÞ
2

q
� qx

ffiffiffiffiffiffi
�Vy

q
, and the turbulence intensity in the trapping region is esti-

mated by Iturb � cL=Dx. Then, Eq. (19) can be estimated as follows:

�N �
cL

ffiffiffiffiffiffi
�Vy

q
8lnCDx

; (22)

where we assume ky � 1. This determines the height of the zonal stair-
case. Figure 5 shows the comparison of the zonal density obtained
from the wave-kinetic simulation and the analytical expression Eq.
(22). The numerical result agrees well with Eq. (22). The dimensional
form of Eq. (22) for the resistive drift wave turbulence can be
expressed by

FIG. 3. Spatiotemporal evolutions of tur-
bulence energy (left panel), zonal flow
(middle panel), and zonal density gradient
(right panel).

FIG. 4. Spatial relationships between turbulence and zonal density. Upper panel:
Snapshot of the action for turbulent flows in the phase space, where the white curve
is the zonal flow pattern. Middle panel: Snapshots of zonal field in real space,
where blue and red curves correspond to zonal flow and zonal density, respectively.
Bottom panel: Snapshot of density profile, which is calculated from the summation
of background and zonal density, where the zonal density is displayed by multiply-
ing by five in order to clarify the spatial pattern.
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�N
N0
� 1

8ð2pÞ2
�e
�i

kk
Ln

� �2 mi

me

ffiffiffiffiffiffi
�Vy

Vd

s
qs

Ln
;

� 1

8ð2pÞ2
qR
Ln

� �2 mi

me

� �3=2 Ti

Te

� �3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Vy

csqs=Ln

s
qs

Ln
: (23)

Here, the coefficients C and ln are evaluated by

C ¼
v2Thek

2
k

�ecs=Ln
¼ ð2pÞ2 cs=Ln

�e

Ln
kk

� �3=2 mi

me
; (24)

ln ¼
�iq2

s

csq2
s =Ln

¼ �i
cs=Ln

; (25)

where �e and �i are the electron–ion and ion–ion collisional frequen-
cies, respectively, and their ratio is estimated by �e=�i �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
ðTi=TeÞ3=2. The parallel wavenumber for turbulence is kk, which can
be written by the connection length kk ¼ 2p=kk, where kk is esti-
mated by qR. It is noted that the presented expression is the zonal
staircase height for the resistive drift wave case under the scale
separation assumption. A treatment of the more general case is
beyond the scope of this study, which should be studied in the
future.

It should be noted that the quasi-linear flux evaluated from the
mixing length theory, which has been widely used, e.g., Refs. 26 and
27, often cannot predict the spatial profile of turbulent transport cor-
rectly especially in the presence of zonal density corrugation. In this
approach, turbulence is not treated and only the local gradient length
scale is considered, so that the spatially localized turbulence profile
cannot be included, and even rather the opposite trend could be
obtained. In the presence of the zonal staircase profile, the turbulence
and the associated transport are strong where the flow curvature is
negative. There, the density gradient is weakened by the zonal density
corrugation, and thus the quasi-linear flux becomes small where the
real turbulence flux is strong.

C. Roles of staircases on turbulence profile

The roles of the zonal density on the turbulence spatial profile
are discussed in this subsection. The spatiotemporal evolution equa-
tion of the turbulence energy, E ¼

Ð
ð1þ k2?Þ

�1Ikd2k, can be derived
by multiplying ð1þ k2?Þ

�1 in the both sides of Eq. (6) and integrating
in the wavenumber-space as follows:

@tE þ @xðbvg EÞ ¼W þ bcLE � cDxE2: (26)

Each term is defined by

bvg E ¼ ð @kxxk

1þ k2?
Ikd

2k ¼ cvg0E 1� �N 0 þ �Vy
00

� �
; (27)

W ¼ 2
ð

kxx0k
ð1þ k2?Þ

2 Ikd
2k ¼ �cvg0E ��N 00 þ �Vy

000
� �

� 2Pxy �Vy
0
;

(28)

bcLE ¼ ð cL
ð1þ k2?Þ

2 Ikd
2k ¼ ccL;0E � aE �N 0 � bE �Vy

00
; (29)

cDxE2 ¼
ð

Dx

ð1þ k2?Þ
2 I

2
kd

2k: (30)

Here, the coefficients are given as follows:

cvg;0 ¼ �E�1 ð 2kxky
ð1þ k2?Þ

3 Ikd
2k; (31)

cL;0 ¼ E�1
ð k2yk

2
?

Cð1þ k2?Þ
4 Ikd

2k; (32)

a ¼ 2cL;0; (33)

b ¼ E�1
ð k2yð1� k2?Þ
Cð1þ k2?Þ

4 Ikd
2k: (34)

The flow shearing effect corresponds to the last term of Eq. (28). Based
on the relations shown in Eqs. (20) and (21), one finds that the zonal
density and the flow curvature, which are the first and second terms in
Eq. (28), have the same effect on turbulence and have opposing effects
on flow shearing. Thus, flow shearing is reduced by zonal density and
flow curvature. For the turbulence propagation speed, Eq. (27),
the zonal density and flow curvature enhance with each other. The
modification of turbulence growth due to the zonal density can be
found in the second term of Eq. (29), where the zonal density works to
suppress the turbulence growth. The mechanism is as follows. The tur-
bulence is trapped where the flow curvature is negative, and as a con-
sequence, the zonal density gradient becomes positive there, as seen in
Fig. 4, which can be understood from Eq. (19). It is noted that the
zonal flow curvature enhances the effect of zonal density to suppress
the turbulence growth.

The roles of zonal density evaluated from the simulation is shown
in Fig. 6. The snapshot of the action for turbulent flows in the phase
space is shown in the upper panel as a reference. The bottom panel
illustrates the profiles of each term in the turbulence energy equation,
Eq. (26), where the blue, black, and red curves are the turbulence prop-
agation term (the second term in LHS), shearing term (the first term
in RHS), and the growth rate term (the second term in RHS), respec-
tively. The dashed lines correspond to those without the zonal density
effect, and the solid lines are the total contributions. The shearing term

FIG. 5. Dependence of zonal density (zonal staircase) on collisional diffusion coeffi-
cient for C¼ 10. The zonal density obtained by the simulation is shown in blue
dots, and the theoretical expression, Eq. (22), is shown by the back curve.
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is negative in the whole region (turbulence suppression), but the prop-
agation term changes its sign, which is the same order of magnitude
with the shearing term. For these terms, the zonal density effect is not
the dominant effect. For the growth rate, the zonal density effect is
important. Due to the effect of zonal density, the turbulence growth
becomes flattened, which competes with the localization of turbulence
due to trapping. Thus, the turbulence profile is determined by the
competition between turbulence trapping and profile flattening caused
by the effect of zonal density. In the presented situation, it is found
that turbulence trapping dominates profile flattening due to the effect
of zonal density.

Finally, we discuss the phase space patterns of the turbulent
fluxes for the momentum and the particle for future validation in sim-
ulations or experiments, which is shown in Fig. 7. The magnitude of
momentum flux is strong, where the turbulence is accumulated (the
negative region for the flow curvature). Because the positive/negative
sign of the momentum flux depends on the sign of kx, and thus, the
momentum flux in the real space, which is integrated in kx, captures
the asymmetry part so that the momentum flux is strong in the region
where the flow shear is strong. The particle flux, which is independent
of the sign of kx, is strong where the turbulence is strong, for the phase
space as well as in the real space. The dashed lines correspond to those
without the zonal density effect, and the solid lines represent the total
contributions. It can be seen that the zonal density plays a role in the
flattening of the growth rate. These structures determine the character-
istics of the zonal staircases. It should be noted that the particle flux
presented in this paper is evaluated quasi-linearly. In other words,
while the zonal flow effect on the turbulence intensity is taken into
account based on the wave-kinetics, the effect of zonal flow on the
phase modulation between the potential and the density in the turbu-
lent component is not perfectly considered. An extension of this study
that includes the phase dynamics should be investigated in the future.

IV. SUMMARY

Density corrugation due to zonal flow, so-called zonal staircase, is
investigated, based on wave-kinetic simulation. The simulation is devel-
oped by considering profile corrugations and the turbulence trapping
mechanism. The modification of profiles and the dispersion relation in
turbulence are included, based on the assumption of scale separation for
turbulence and zonal field and the phase relationship for the turbulence
fluctuations. We obtain the analytical expression for the zonal density
(the staircase height), which is driven by the modulation of particle
transport. It is found that the normalized zonal density can be compara-
ble to the zonal flow normalized by the diamagnetic drift velocity.
However, under the circumstances in this study, the density corruga-
tions that stems from the zonal density are too small to strongly modify
the turbulence intensity pattern. This is because the diffusive flux domi-
nates; so the density fluctuations are relatively unimportant. The key
effect that determines the turbulence profile is found to be turbulence
trapping by the zonal flow, while the profile corrugation due to the effect
of zonal density has weaker effects. Thus, turbulence is localized where
the flow curvature is negative, which leads to a flattening of the density
profile through the enhancement of particle transport. This fact clearly
shows that the effect of turbulence trapping dominates the density gra-
dient dependence of the local linear instability.
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FIG. 6. Roles of each term in turbulence energy equation on turbulence profile. The
snapshot of the action of turbulence in the phase space is shown in the upper panel
as a reference. The bottom panel illustrates the profiles of each term in turbulence
energy equation, Eq. (26), where the blue, black, and red curves are the turbulence
propagation term, shearing term, and the growth rate term, respectively. The
dashed lines correspond to those without the zonal density effect, and the solid
lines are the total contributions.

FIG. 7. Spatial pattern of the turbulent fluxes: Left panel shows the profile of the
momentum flux in the phase space (upper), and in the real space (bottom), where
the real space pattern is obtained from the integral of the wavenumber space. Right
panel shows the particle flux in the phase space (upper), and in the real space (bot-
tom). For the real space pattern, the cases with and w/o the zonal density are
shown in solid and dashed lines, respectively. The dashed lines correspond to
those without the zonal density effect, and the solid lines are the total contributions.
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APPENDIX: TURBULENCE TRAPPING IN ZONAL
FLOW

Turbulence trapping can be understood from the turbulence tra-
jectory in phase space, which is the characteristic curve of Eq. (6) in the
case where the growth and nonlinear damping of turbulence are
absent. In order to clarify the flow effect on the turbulence dynamics,
here, we neglect the effects of the zonal density and the higher order
spatial derivatives, and only the fundamental terms are considered. The
turbulence trajectory in phase space ðxðtÞ; kxðtÞÞ is governed by13,25

dxðtÞ
dt
¼ � 2kxðtÞky
ð1þ kxðtÞ2 þ k2yÞ

2 ; (A1)

dkxðtÞ
dt
¼ �kyVyðxðtÞÞ0: (A2)

From this set of equations, we obtain

d2xðtÞ
dt2

�
2k2yV

00
y

ð1þ k20 þ k2yÞ
2

" #
xðtÞ; (A3)

where k0 is the time average value of kxðtÞ. From this, we found
that when V 00y < 0, the solution of x(t) is the oscillation, which is
the turbulence trapping, and when V 00y > 0, the turbulence expo-
nentially propagates, which is the exclusion of the turbulence. In
this way, the asymmetry with respect to the sign of the flow curva-
ture on the turbulence dynamics appears.
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