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1. Introduction

Particle-wave interaction plays a crucial role in a variety of 
applications. It is particularly important in burning tokamak 
plasmas since fast particles are required to provide additional 
heating and current drive in a reactor. Energetic particles (EPs) 
can be produced by neutral beam injection (NBI) or radio fre-
quency (RF) heating, as well as fusion reactions themselves. 
These fast particles can drive Alfvén eigenmodes, which, in 

turn, may lead to detrimental particle losses. Since alpha par-
ticles are considered as the main heating source in a fusion 
reactor, their losses need to be mitigated or prevented in an 
optimal scenario. In a tokamak, various nonlinear regimes can 
be gathered under the umbrella of this bump-on-tail instability 
[1–3]. In its simplest version, the bump-on-tail instability can 
be modelled by a background of thermal electrons with a 
Maxwellian velocity distribution, neutralized by steady ions, 
while fast electrons are described by a shifted Maxwellian, 

Nuclear Fusion

Stability analysis of secondary modes, 
driven by the phase space island

A.V. Dudkovskaia1 , X. Garbet2 , M. Lesur3  and H.R. Wilson1,4

1 York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, 
United Kingdom of Great Britain and Northern Ireland
2 CEA, IRFM, F13108 St. Paul-lez-Durance cedex, France
3 Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
4 CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB, United Kingdom of Great Britain and 
Northern Ireland

E-mail: avd512@york.ac.uk

Received 28 January 2019, revised 11 April 2019
Accepted for publication 9 May 2019
Published 21 June 2019

Abstract
We present a new theoretical approach, based on the Hamiltonian formalism, to investigate the 
stability of islands in phase space, generated by trapping of energetic particles (EPs) in plasma 
waves in a tokamak. This approach is relevant to MHD modes driven by EPs (EP-MHD) 
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fishbones. A generic problem of a single isolated EP-MHD mode is equivalent to and hence 
can be replaced by a 2D Hamiltonian dynamics in the vicinity of the phase space island. The 
conventional Langmuir wave/bump-on-tail problem is then used as a representative reduced 
model to describe the dynamics of the initial EP-MHD.

Solving the Fokker–Planck equation in the presence of pitch angle scattering, velocity 
space diffusion and drag and retaining plasma drifts in a model, we find a ‘perturbed’ 
equilibrium, associated with these phase space islands. Its stability is then explored by 
addressing the Vlasov/Fokker–Planck–Poisson system. The Lagrangian of this system 
provides the dispersion relation of the secondary modes and allows an estimate of the mode 
onset. The secondary instabilities have been confirmed to be possible but under certain 
conditions on the primary island width and in a certain range of mode numbers. The threshold 
island width, below which the mode stability is reached, is calculated. The secondary mode 
growth rate is found to be maximum when the associated resonant velocity approaches the 
boundary of the primary island. This, in turn, leads to a conclusion that the onset of the 
secondary mode can be prevented provided the primary wave number is the lowest available.
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localized near a beam velocity, Vb. The problem is 2D, i.e. one 
spatial direction, x, and the corresponding velocity variable, 
V . If the beam velocity is large enough, the electron distribu-
tion function exhibits a positive slope in the vicinity of Vb, 
which is prone to instabilities. In its original version, these 
modes are Langmuir waves, but are akin to Alfvén modes, 
driven by a population of fast particles in a tokamak [4–6]. A 
bump-on-tail instability is driven linearly via a wave-particle 
resonance, which occurs when the particle velocity matches 
the mode phase velocity, Vph = ω0/k0, where ω0 is the mode 
pulsation and k0 is its wave number. A single mode (ω0, k0) 
evolves nonlinearly in various ways depending on the dissipa-
tion terms (distribution function and field) and the strength 
of the drive. The different behaviors (steady, periodic, chaotic 
and chirping) have been widely studied in the past, and led to 
phase diagrams that provide the type of dynamics depending 
on plasma parameters [7, 8]. Saturation towards a steady state, 
which is paradigmatic when dissipation is high enough, is 
due to the formation of an island near the resonant velocity, 
V = Vph . The distribution function flattens within the island, 
thus decreasing the drive. Saturation occurs when the residual 
drive matches the dissipation rate, which is large near the 
island separatrix, where the gradients of the distribution func-
tion are steep. This process leads to the formation of a plateau 
near V = Vph  [9]. We also note that saturation is possible in the 
collisionless regime via the formation of a plateau in velocity 
space within the island, and the onset of O’Neil–Mazitov 
oscillations [10–12]—we will however restrict the analysis in 
the present work to the case where dissipation remains finite.

Steady solutions are no longer allowed when the dis-
sipation rate decreases. One interesting behavior is called 
frequency chirping, the name of which is self-explanatory. 
Frequency chirping is ubiquitous in tokamaks for toroidal 
Alfvèn eigenmodes (TAEs) or fishbones [13–15]. The expla-
nation, proposed within the framework of the bump-on-tail 
problem, involves the formation of clumps and holes in phase 
space. The motion of a clump/hole pair is associated with a 
time dependence of the mode frequency, i.e. chirping [2]. We 
note that other explanations have been proposed in the limit of 
strong drive [3]. The limit of weak drive only will be consid-
ered here. It should be highlighted that the model, described 
in [2], also called the ‘Berk–Breizman’ model, addresses 
the asymptotic behavior of a clump/hole pair dynamics. The 
mechanism that leads to the formation of the clump/hole pair 
is still elusive. One mechanism was proposed by Lilley and 
Nyqvist [16], where the clump/hole pair appears because of 
the onset of secondary instabilities that occur near the non-
linear structure, associated with a ‘primary’ mode. The pri-
mary mode here is an unstable wave (ω0, k0), that evolved into 
a nonlinear quasi-saturated state, associated with a plateau of 
the distribution function near the resonant velocity, V = Vph . 
The steepening of the distribution at the edges of the plateau 
drives, in turn, secondary instabilities, which are identified as 
negative energy waves in [16]. It should be stressed here that 
in this work, the plateau is a band in the velocity space V , and 
hence does not depend on the spatial coordinate x. However, 
the primary mode is expected to evolve towards the formation 
of an island in phase space [17]. A plateau then forms inside 

the island region, bounded by the separatrix, in the vicinity of 
which secondary modes are expected to appear. Intrinsically, 
this is a 2D problem in phase space, (x, V). The onset of sec-
ondary instabilities near the island in phase space is the ques-
tion that is addressed here.

The island in phase space can be treated as a special case 
of a BGK mode, named after Bernstein, Greene and Kruskal, 
who predicted that BGK modes belong to a large class of non-
linear solutions of the Vlasov–Poisson problem [18]. Hence, 
the existence of secondary instabilities close to the island in 
phase space is related to the question of whether BGK modes 
are stable or not. One important difference though is that 
BGK modes are usually investigated in the collisionless limit, 
whereas collisions have an important influence on the satur-
ated primary mode in the present work. An important theorem 
that applies to the bump-on-tail problem states that the BGK 
saturated mode is unstable [19]. A secondary instability 
generically appears in the form of a subharmonic mode with 
a wave number that is half the wave number of the primary 
BGK mode. The proof is given for a primary mode amplitude 
that is small enough, i.e. a situation not too far away from 
marginal stability. Nevertheless, the regime is nonlinear in 
essence since particles, trapped in the primary BGK mode, are 
accounted for. The theorem predicts instability, but does not 
provide a quantitative growth rate of the secondary mode. The 
situation is less clear for numerical simulations and related 
analytic work, since secondary instabilities are predicted and 
found under certain conditions only [17, 20, 21]. Indeed, it 
appears in [20, 21] that at least three beams are required to 
obtain instability . This result comes from a linear stability 
analysis and numerical simulations. More recently the sta-
bility of BGK modes has been numerically investigated for 
the bump-on-tail problem [17]. It was found that the onset of 
secondary instabilities is not systematic. When a secondary 
mode appears, it is usually a subharmonic of the primary one, 
in agreement with the aforementioned theorem [19]. However, 
it appears in practice that secondary instabilities are, in fact, 
linearly weakly unstable [17]. Therefore, the stability of BGK 
states seems to be connected to the linear stability properties 
of the unperturbed state, as highlighted in [19, 21]. This is not 
exactly what is looked for as ideally the initial state should 
be such that a single primary mode is linearly unstable, while 
secondary modes are fully stable. Nevertheless, the nonlinear 
strengthening of a mode that is initially weakly unstable is 
certainly of interest for practical purposes. It should be under-
lined here that most analytic calculations do not take into 
account the island shape of the primary equilibrium, i.e. most 
assume a small island width, which is, in fact, equivalent to a 
linear stability analysis of the unperturbed state.

The present work investigates the stability of a dissipa-
tive primary equilibrium, i.e. situations where a plateau of 
the distribution function forms within the primary island, 
without any restriction on the island width, and therefore 
on the distance to marginal stability. Hence this calculation 
applies to large island widths, i.e. fully nonlinear situations. 
The primary equilibrium is determined by the solution of the 
Fokker–Planck equation, i.e. with collisions, accounting for 
both diffusion and drag. A dispersion relation is then derived. 
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Two forms have been obtained. In the first one, the distri-
bution function appears only via its average over the island 
structure. This dispersion relation applies to numerical simu-
lations, where a single secondary mode is allowed to grow. A 
second dispersion relation has also been determined, which 
fully accounts for the details of the distribution function. It 
appears that the onset of secondary modes depends sensitively 
on the width of the island. Typically the instability growth rate 
becomes positive above a critical island width, reaches a max-
imum, then decreases with increasing island width. Stability 
occurs above a second critical island width. This result is in 
line with time dependent numerical simulations, which find 
that the stability of a primary mode depends sensitively on the 
island width. Basically the growth rate is optimum when the 
steepening of the distribution function near the island separa-
trix matches the phase velocity of the secondary mode.

The remainder of the paper is organized as follows. 
Section 2 states the problem. The primary nonlinear equilib-
rium is computed in section 3. Section 4 provides the analytic 
derivation of the dispersion relation for secondary modes and 
addresses numerical solutions of this dispersion relation, as 
well as initial value solutions. A conclusion follows.

2. Position of the problem

To seek secondary instabilities, we address the conventional 
Vlasov/Fokker–Planck–Poisson system, i.e. a set of Vlasov/
Fokker–Planck equations

∂fj
∂t

+ V‖�‖fj +VVVE×B ·���fj +VVVb ·���fj −
eZj

mjV
[
V‖�‖Φ+VVVb ·���Φ

] ∂fj
∂V

= Cj (fj) + S
 

(1)

for each particle species, j , coupled to Poisson’s equation

ε0∇2Φ = −
∑

j

eZj

∫

R
fjdVVV . (2)

Here ‖ denotes a vector component along the magnetic field 
lines, ∇‖ = bbb · ∇∇∇, bbb = BBB/B. VVVE×B and VVVb are the EEE ×BBB 
and magnetic drift contributions. Φ is the electrostatic poten-
tial; eZj  and mj  are the particle charge and mass, respec-
tively. The right hand side, written as a sum of the collision 
operator, Cj , and a source term, S, is to be introduced below. 
A system of three particle species is considered: j  in equa-
tions  (1) and (2) is used for thermal electrons and ions, as 
well as a population of EPs, i.e. fast electrons/ions that trigger 
the bump-on-tail instability. In a toroidal set of coordinates, 
the particle distribution function, f j , is to be understood as 
fj = fj (t,ψ,ϑ, ζ,VVV). ψ is the poloidal flux function; ϑ and ζ 
are the poloidal and helical angles, respectively. ζ is defined 
as m0ϑ− n0ϕ− ω0t , where m0/n0 are the poloidal/toroidal 
primary mode number, ϕ is the toroidal angle, and ω0 is 
the primary mode frequency. Equation  (1) can be rewritten 
as a pair of Hamilton’s equations  for a set of angular and 
action variables, {ααα,JJJ}. For a tokamak plasma, the action 
vector components are represented by three adiabatic 

invariants of charged particle motion. Introducing a single per-
turbation, associated with the island in phase space, we have 
H0 (JJJ,ααα, t) = H00 (JJJ) + h cos (nnnααα− ω0t) for the full primary 
Hamiltonian. Here H00 is the unperturbed Hamiltonian, i.e. 
in the absence of the island, and nnn = (n1, n2, n3) is a triplet 
of integers. Setting ξ = nnnααα− ω0t, we define a resonant 
surface by 

∑3
i=1 niΩi (JJJ) = ω0 with dααα/dt = ΩΩΩ(JJJ). Then 

the action vector becomes JJJ = JJJres + nnnI  in the vicinity of 
the resonant surface, where JJJres is a vector that lies on the 
resonant surface and I measures the corresponding dis-
tance to it (see figure 1). Then it can be easily verified that 
H0 (JJJ,ααα, t) = H00 (JJJres) + CI2/2 + h cos ξ, where C is the 
Hessian of the Hamiltonian on the resonant surface. To sim-
plify the analysis below, we take h slowly varying over the 
island width. Setting p   =  CI, we obtain

H0 = p2/2 − ω2
b cos ξ (3)

for a new total primary Hamiltonian. The bounce frequency 
of deeply trapped particles (i.e. particles trapped in phase 
space), ωb, has been defined according to ω2

b = −Ch . Here 
we note that any 6D dynamics in phase space can be reduced 
to a 2D phase space island dynamics, provided two invariants 
of motion lie on the resonant surface.

In the slab geometry in the absence of tokamak drifts, 
equation (1) simply reads

∂fj
∂t

+ V
∂fj
∂x

−
eZj

mj

∂Φ

∂x
∂fj
∂V

= Cj (fj) + S. (4)

Equation (1)/equation (4) is to be solved for f j , a time depen-
dent particle distribution function, considered as a function 
of position, {ψ,ϑ, ζ} /x , and velocity, VVV/V . Φ is a function 
of position and time. For simplicity, let us restrict the anal-
ysis to the (t, x) plane. We assume that a primary wave has 
been developed and saturated in the form of an island and that 
the corresponding potential is Φ (x, t) = Φ0 cos (k0x − ω0t).   
It is then convenient to work in a wave reference frame 
and introduce a new spatial variable ξ = k0x − ω0t  that is 
conjugated to a momentum, p = ∂ξ/∂t = k0V − ω0. Hence,   
the Hamiltonian in this set of variables becomes 
H0 (x, V) = (k0V − ω0)

2
/2 − k2

0 (eZj/mj) Φ0 cos (k0x − ω0t) . 
It is an invariant of motion and is equivalent to p  as a vari-
able in velocity space, provided the sign of p , noted σp, is 

Figure 1. A phase space island near the resonant surface, 
nnn ·ΩΩΩ(JJJ) = 0.

Nucl. Fusion 59 (2019) 086010
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kept as an extra variable. Defining the bounce frequency at the 
deeply trapped end as ω2

b = k2
0eZjΦ0/mj , we again write equa-

tion (3) for the full primary Hamiltonian in the ( p, ξ) plane. 
Extending this to the toroidal geometry, we replace H0 (x, V) 

with H0 (ψ,ϕ,ϑ,VVV) = V2
‖/2 + µB + eZjΦ (ψ,ϕ,ϑ) [22] with 

µ = V2
⊥/2B denoting the magnetic moment, and B being the 

total magnetic field. The electrostatic potential takes the form 
Φ0 cos ζ  (the ψ dependence of Φ0 has been neglected for con-
venience). We underline that the guiding center equations of 
motion in a tokamak that fully account for the magnetic drifts 
as well as their reduced slab formulation are allowed to be 
written in a Hamiltonian form. Thus, from a mathematical 
point of view any EP-MHD problem, including both the 
Langmuir wave and the TAE problems, becomes identical 
in the toroidal and slab geometry, if written in terms of the 
Hamiltonian function.

Constant H0 contours in the ( p, ξ) plane describe an island-
like structure and will be referred to as an island in phase 
space. A new equilibrium, described by f 0,j , is to be calculated 
from the Fokker–Planck equation, which now reads as

∂f0,j

∂t
− {H0, f0,j} = Cj (f0,j) + S. (5)

Here curly brackets represent the conventional Poisson 

bracket, i.e. { f , g} = ∂f
∂ξ

∂g
∂p − ∂f

∂p
∂g
∂ξ . Once f 0,j  is obtained, 

we can investigate the stability of this new, ‘perturbed’, equi-
librium, i.e. the stability of secondary waves, which we take 
of the form Φkωeikx−iωt + c.c., where k and ω  are their wave 
number and frequency, respectively. In the primary wave 
frame, these waves become Φkωeilξ−iδωt + c.c. with l  =  k/k0 
and δω = ω − lω0. l here is not necessarily an integer. We 
also need to rewrite equation (2) in an equivalent Lagrangian 
formulation. If the electrostatic potential takes the form 
Φ (x, t) = Φωe−iωt + c.c., then the full Hamiltonian and the full 
EP distribution function read H (ξ, p) = H0 (ξ, p) + δH  and 
fj (ξ, p) = f0,j (ξ, p) + δfj with δH = hω (ξ, p) e−iδωt + c.c. 
and δfj = fjω (ξ, p) e−iδωt + c.c. Here H0 (ξ, p) and f0,j (ξ, p) 
correspond to the new primary equilibrium, which will be the 
subject of section 3, while δH  and δfj are perturbed parts of 
the Hamiltonian and of the EP distribution function that arise 
due to the secondary mode occurrence. The amplitude factor 
is hω = eZjΦω with hω (ξ, p) = hkωeilξ (kx is to be replaced by 
mϑ− nϕ in a tokamak extension with m/n being the poloidal/
toroidal secondary mode number). Poisson’s equation is then 
equivalent to the state, where the functional

L (ω) = ε0

∫ L

0
dx|�Φω|2 −

∑
j

eZj

∫ L

0
dx

∫

R
fjω (ξ, p) Φ∗

ω (ξ, p) dV

 (6)
is extremum for any variation of Φ∗

ω. Here L is the box length, 
chosen as a multiple of the primary period, k0L = 2πj0, 
where j 0 is integer. Thus, we solve ∂L/∂Φ∗

ω = 0 according to 
Fermat’s theorem, and once the solution is found, L (ω) = 0 
provides the dispersion relation for the secondary modes. 
Redefining the Lagrangian, given by equation (6), to rewrite it 
in terms of { p, ξ}, we have

L (ω, l) = −l2|hkω|2 +
∑

j

Lj (ω) (7)

with

Lj (ω) = ω2
pj

∫ π

−π

dξ
2π

∫

R
fjh∗ωdp. (8)

Lj is the Lagrangian of a given species. The first term in equa-
tion (7) is the field contribution to Poisson’s equation. Here ωpj 

is the plasma frequency of a species, ω2
pj = nj(eZj)

2
/ε0mj, and 

the particle distribution function is normalized to density of a 
considered species, nj , in p  coordinates, i.e. 

∫
R fjdp = 1. The 

perturbed Hamiltonian, hkω, is defined as hkω = k2
0eZjΦkω/mj . 

We note that a constant normalization factor has been dropped 
here. The perturbed distribution function, fjω, is a solution of 
the linearized Fokker–Planck equation:

−iδωfjω − {H0, fjω} = {hω , f0,j} . (9)

Since f 0,j  is a non-trivial function of H0 ( p, ξ), the Poisson 
brackets {H0, fjω} and {hω , f0,j} introduce multiples of the 
basic harmonic, lξ − δωt . However far from the island, 
H0 � p2/2, and the corresponding solution is trivial. The 
system then behaves as if primary and secondary waves do 
not interact. This case is to be applied to thermal particles, 
provided the thermal resonances occur far from the EP reso-
nances in phase space. The second approach, which we run 
numerically, consists in keeping the basic harmonics only, so 
that the Fokker–Planck equation reads

−iδωfjω − {H0, fjω} =
{

hω , 〈 f 0,j〉ξ
}

. (10)

An angular bracket here indicates an average over ξ and 
will be defined below. Finally, a full nonlinear solution can 
be obtained by moving from the set of variables {ξ, p} to 
{ξ, H0;σp} and will be the subject of section 4.

3. Primary equilibrium

To search for the secondary instabilities, we start with a 
calcul ation of a new primary equilibrium state, given by f 0,j . 
f 0,j  is a solution of equation (5) and describes the electron/ion 
response to a single island in phase space, associated with the 
bump-on-tail instability. As the main electrons and ions are 
assumed to be Maxwellian, equation (5) is to be solved only 
for the EP fraction, i.e. fast electrons/ions, whose population 
is lower compared to the bulk plasma. The combined effect of 
the source term and the collision operator is written through 
the Fokker–Planck collision integral that includes collisions 
on EPs by the thermal, Maxwellian background. The initial 
form of this collision operator acting on the EP distribution 
function is taken to be of the form:

Cj + S = 2νj
(1 − λB)1/2

B
∂

∂λ

∣∣∣∣
ψ

[
λ(1 − λB)1/2 ∂

∂λ

∣∣∣∣
ψ

]

+
1

V2

∂

∂V

[
V3

(
νslow +

ν‖

2
V

∂

∂V

)]
,

 
(11)

Nucl. Fusion 59 (2019) 086010



A.V. Dudkovskaia et al

5

where νj, νslow and ν‖ are the pitch angle scattering, slowing down 
and parallel velocity diffusion rates, respectively. λ here is the 
pitch angle, defined as 2µ/V2. Following the Berk and Breizman 
paper [23, 24], we project this Fokker–Planck operator on the 
resonant phase space surface to replace it by a combination of 
operators in p  space. This reduces the col lision integral dimension 
from 2D to 1D in velocity space. The Jacobian of this coordinate 
transformation is given in [23]. After this procedure, we come to

Cj (f0,j) + S = Dp
∂2

∂p2

∣∣∣∣
ξ

(f0,j − feqm,j) + νf ,p
∂

∂p

∣∣∣∣
ξ

(f0,j − feqm,j) .

 (12)
Here Dp  and νf ,p are the diffusion and dynamical friction 
(i.e. slowing down) coefficients in p  space, related to the 
diffusion νd,V  and friction νf ,V  rates in velocity space via 

Dp = ν3
d,V(k0/k)2 and νf ,p = ν2

f ,V(k0/k). f eqm,j  is the unper-
turbed distribution function, i.e. in the absence of the phase 
space island, which appears as a dotted line in figure 3. The 
Vlasov part of the Fokker–Planck equation [25] is

df0,j

dt
≡

∂f0,j

∂t
− τ

[
∂tH0 − 〈∂tH0〉ξ

] ∂f0,j

∂J
+ p

∂f0,j

∂ξ
 (13)

with J being the action variable, defined as 
J (H0, t) =

∮ dξ
2πp (t, ξ, H0;σp), and τ  denoting the bounce 

period, τ =
∮ dξ

2πp−1 (t, ξ, H0;σp) (an angular bracket denotes 
the ξ-averaging procedure and is to be introduced later in this 
section). Working in the wave reference frame and seeking the 
time-independent solution, we reduce a set of equations (5), 
(12) and (13) to

p (ξ, H0;σp)
∂f0,j

∂ξ

∣∣∣∣
H0

= Dpp2 (ξ, H0;σp)
∂2

∂H2
0

∣∣∣∣
ξ

(f0,j − feqm,j)

+ [Dp + νf ,pp (ξ, H0;σp)]
∂

∂H0

∣∣∣∣
ξ

(f0,j − feqm,j) .

 

(14)

Here p  has been replaced by a pair {H0;σp}. It is con-
venient to define a new distribution function, g0,j , as 
f0,j − feqm,j to measure a shift from the equilibrium state. To 
solve equation  (14) for g0,j , we define a small parameter 
δ = max

(
Dp/ω

3
b , νf ,p/ω

2
b

)
� 1, which implies weak col-

lisional dissipation. Treating the system perturbatively, we 

apply an expansion g0,j =
∑

α g(α)
0,j δα to obtain

∂g(0)
0,j

∂ξ

∣∣∣∣∣
H0

= 0 (15)

to 0th order. Here we learn that g(0)
0,j  is ξ-independent at any 

fixed H0, i.e. g(0)
0,j = g(0)

0,j (H0;σp). Proceeding to next order by 

introducing collisions, we obtain an exact form of g(0)
0,j  from 

the collisional constraint. The O
(
δ1
)
 equation reads

p (ξ, H0;σp)
∂g(1)

0,j

∂ξ

∣∣∣∣∣
H0

= Dpp2 (ξ, H0;σp)
∂2g(0)

0,j

∂H2
0

∣∣∣∣∣
ξ

+ [Dp + νf ,pp (ξ, H0;σp)]
∂g(0)

0,j

∂H0

∣∣∣∣∣
ξ

.

 

(16)

To eliminate the term in g(1)
0,j , we introduce an annihilation 

operator, which averages the free streaming term 
∂g(1)

0,j

∂ξ

∣∣∣∣
H0

 over 

ξ. For passing particles in phase space, i.e. particles outside 
the phase space island H0 � ω2

b  (see figure  2), we simply 
integrate over a period in ξ, requiring g0,j (−π) = g0,j (π). For 
trapped particles inside the island, i.e. −ω2

b � H0 < ω2
b, we 

need to integrate equation  (16) between the bounce points, 
given by ξb = ± arccos

(
−H0/ω

2
b

)
, and, in general, sum 

over the two streams, σp = ±1, to provide continuity at each 
bounce point. Therefore, we introduce

Figure 2. Sketch of H0 against ξ at p   =  0. ξ varies from −π to π 
outside the phase space island and between the bounce points, ξb1,2, 
given by H0 = −ω2

b cos ξb1,2, inside the island region.

Figure 3. The EP distribution function f̂0,j versus p̂ across the 
island O-point, i.e. ξ = 0, for arbitrary D̂p and ν̂f ,p. The solution, 
f̂0,j, is localized to the island vicinity, which allows the initial 
equilibrium distribution function to be Taylor expanded in the 
vicinity of the resonant surface. Dashed lines indicate the position 
of the phase space island separatrix, Ĥ0 = ω̂2

b . Hats indicate the 
normalization that has been chosen as in [26].
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〈...〉ξ =

{
1

2π

∫ π

−π
...dξ, H0 � ω2

b
1

4π

∑
σp
σp

∫ ξb

−ξb
...dξ, −ω2

b � H0 < ω2
b

 (17)

ω2
b corresponds to the separatrix of the phase space island. 

Dividing both sides of equation  (16) by p (ξ, H0;σp) and 
applying the ξ-averaging operator, equation (17), we arrive at 
the final equation for the leading order EP distribution func-

tion, g(0)
0,j :

〈Dpp (ξ, H0;σp)〉ξ
∂2g(0)

0,j

∂H2
0

∣∣∣∣∣
ξ

+ 〈
Dp

p (ξ, H0;σp)
+ νf ,p〉

ξ

∂g(0)
0,j

∂H0

∣∣∣∣∣
ξ

= 0.

 (18)
To match solutions at the trapped/passing boundary, 
Hc

0 = ω2
b , we impose 

∑
σp
σpg p = 0, 

∑
σp

g p = 2gt and ∑
σp
∂g p/∂H0 = 2∂gt/∂H0 to provide continuity across 

the boundary. Here indices p  and t denote the passing and 
trapped regions, respectively. These matching conditions can 
be treated as the particle conservation law as we cross the 
boundary [27]. Far from the island, f 0,j  must be linear in p  
to match to the Maxwellian equilibrium distribution function 
(see figure 3). This linear behavior is provided by f eqm,j  and as 
f0,j = feqm,j + g0,j, g0,j  must satisfy ∂pg0,j|p→±∞ = 0. Solving 

this numerically for arbitrary Dp , νf ,p and ωb, we obtain g(0)
0,j  

as a function of H0 for each σp. f (0)
0,j  versus H0 is shown in 

figure 4 for passing and trapped particles (the solution tech-
nique can be found in the appendix A.1). The solution in the 

trapped region has no σp dependence, which results from 

equation (17). Constant f (0)
0,j  contours, plotted in figure 4 in the 

(p, ξ) plane, map out constant H0 contours of the phase space 

islands. Once f (0)
0,j = f (0)

0,j (H0;σp) is found, we immediately 

obtain f (0)
0,j  in p  space, i.e. f (0)

0,j (H0 (ξ, p) ;σp).
The perturbative approach we apply breaks down in the 

‘dissipation’ layer, i.e. in a narrow region of phase space in 
the vicinity of the island separatrix. Here collisional dissipa-
tion becomes comparable to free streaming ∼ p∂/∂ξ, and 
a full solution of equation  (14) is required. Solving equa-
tion (14) with similar boundary conditions in H0 and applying 
f0,j (−ξb) = f0,j (ξb) (ξb reduces to π for passing particles) in 
ξ, we obtain f0,j = f0,j (ξ, H0 (ξ, p) ;σp). f 0,j  versus p  is illus-
trated in figure  3 for arbitrary D̂p and ν̂f ,p. As can be seen 
from the figure, in a pure diffusion case the flattening of the 
EP distribution function is maintained across the island. f 0,j  
versus p  approaches the Zakharov and Karpman solution [9], 
but with a more detailed treatment of the separatrix layer. 
Inclusion of drag modifies the distribution form significantly, 
creating a hole close to the island O-point, which grows with 
growing νf ,p. A similar destabilizing effect of dynamical fric-
tion was demonstrated by Lilley [24] in the slab geometry. 
Estimations, made in [24], show that the slowing down effect 
might be dominant over the collisional diffusion near the reso-
nance region. As will be shown in section 4, a shape of the 
secondary mode Lagrangian and hence the corresponding dis-
persion function depend significantly on the amount of drag 
included.

In figures  5–7 we benchmark the EP distribution func-
tion, obtained as a solution of equation (14), against the full-f 
approach, provided by COBBLES (see appendix A.5 for more 
detail). Two scenarios are considered: (1) pure diffusion and 
(2) νf ,V � νd,V . The friction/diffusion ratio νf ,V/νd,V � 1 in a 
typical NBI discharge and νf ,V/νd,V � 1 in the vicinity of the 

Figure 4. (top) The leading order EP distribution function as a function of y =
√

Ĥ0 + ω̂2
b  for two branches of the stream, σp = ±1 for 

(a) a case of pure diffusion, (b) when velocity diffusion and drag are comparable and (c) when the drag term is dominant. The dotted line 
represents the trapped/passing boundary, yb =

√
2ω̂b. y � yb and 0 � y < yb correspond to the passing and trapped regions, respectively. 

The trapped particle solution is σp-independent and hence both σp branches match in the trapped region. (bottom) Constant f̂ (0)
0,j  contours in 

the (p̂, ξ) plane, which repeat the phase space island structure; ω̂b = 1. Hats indicate the normalization that has been chosen as in [26].
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TAE resonance (νf ,V/νd,V = 2.16 chosen in our model). The 
behavior in the island region is found to be in good agree-
ment with the COBBLES results. The discrepancy far from 
the island is expected and arises due to the difference in the 
boundary conditions we apply.

3.1. Self-consistency

We need to ensure that the perturbed Hamiltonian is consis-
tent with the Maxwell set of equations. We restrict the anal-
ysis to the first harmonic of the distribution function in ξ, in 
accordance with the cos ξ form of the perturbed Hamiltonian. 
Hence, we define the following component gω

0,j  of the distribu-
tion function:

gω
0,j (J, t) =

∮
dξ
2π

g0,j (ξ, J, t) e−iξ. (19)

Maxwell’s equations are equivalent to finding an extremum of 
the functional L (ω) = L(field) (ω) + L(field) (ω) with respect 
to the vector potential AAA∗

ω and electrostatic potential Φ∗
ω, where

L(field) (ω) =

∫
dxxx

(
ε0EEEω ·EEE∗

ω − 1
µ0

BBBω ·BBB∗
ω

)
 (20)

and

L(part) (ω) =
∑

j

∫
dxxx (jjjω ·AAA∗

ω − ρω · Φ∗
ω). (21)

Here EEEω is the electric field, BBBω the magnetic field, jjjω the cur-
rent density and ρω the charge density. Summing over j  repre-
sents a sum over all the species. A straightforward calcul ation 
shows that

L(part) (ω) = −
∑

j

∫
dxxxdpppgω0,jh

∗
ω −

∑
j

∫
dxxx

nj(eZj)
2

mj
AAAω ·AAA∗

ω ,

 (22)
where hω = eZj (Φω −VVV ·AAAω) is the perturbed Hamiltonian, 
and VVV = (ppp − eZjAAAeqm (xxx)) /mj is the unperturbed velocity, 
which is a function of (xxx,ppp). Solving a bump-on-tail problem, 
we drop the magnetic field contribution and reduce a problem 
to 2D in phase space. Hence, equations (20) and (22) are equiv-
alent to equations  (7) and (8). For δω � ω0 the Lagrangian 
can be written as L (ω) = L0 (ω) + L1 (ω). Here L0 is real 
and is related to the magnetohydrodynamic (MHD) energy, 
δWMHD, (it can be shown that L0 = −2δWMHD) and L1 rep-
resents the weak resonant interaction between the perturbed 
electro-magnetic field and particles. Hence for one resonant 
species, L1 =

∫
dxxxdpppgω

0,jh
∗
ω. The functional L1 is complex, 

in particular 2ω�L1 measures the resonant energy exchange 
between the mode and the exciting particles. At lowest order, 
we find a dispersion relation that gives the reference real pul-
sation, ω0, i.e. L0 (ω0) = 0. The first order reads

2ω0
∂L0

∂ω

∣∣∣∣
ω=ω0

[δω + i (γ + γd)] = −2ω0L1. (23)

Setting Λω = ω0 ∂L0/∂ω|ω=ω0
 (mode energy frequency), we 

find the following constraint

δω = − ω0

Λω
�L1,

γ = − ω0

Λω
�L1 − γd.

 (24)

The first equation in equation (24) is a correction to the disper-
sion relation that provides the frequency shift, δω, while the 
second one is an energy balance equation, which provides the 
growth/decay rate of the wave, γ . Here an ad-hoc damping 
rate, γd, has been added to equation  (24). When a second 
stabilizing species is added, it corresponds to an energy sink 
due to the Landau damping. Rewriting the phase space ele-

ment in terms of ξ, L1 =
2h2

ω

ω2
b

∫ π

−π
dξ
2πdpg0,j (ξ, p, t) e−iξ, 

where dξ
2πdp =

∑
σp

dξ
2π

dH0
p =

∑
σp

dξ
2π

dJ
τp. Then equation  (24) 

becomes

δω = −2
ω0

ω2
b

h2
ω

Λω

∑
σp

∫ Jmax

0
dJ〈g0,j cos ξ〉ξ,

γ = 2
ω0

ω2
b

h2
ω

Λω

∑
σp

∫ Jmax

0
dJ〈g0,j sin ξ〉ξ − γd,

 (25)

where Jmax is chosen so that the integration domain covers 
the whole phase space, inside and outside the island, i.e. 
Jmax = ∞, which is also valid for the Zakharov–Karpman 
solution [9]. To provide a link to the Berk and Breizman 
case, we choose Jmax corresponding to the separatrix of a 
hole or a clump and replace g0,j , defined as f0,j − feqm,j, by 
f0,j − feqm,j|res − (∂feqm,j/∂p)|resp (here res denotes the reso-
nant surface), since J  =  0 corresponds to the hole/clump 
center. In the Berk–Breizman conventions, there is no sum 
over σp in equation (25), as the action, J, encompasses both 

branches of the bounce motion. Setting γL = πω0
∂feqm,j

∂p

∣∣∣
res

h2
ω

Λω
 

as in [1, 2], we recover the main result of [1, 2]:
(
−δω

γd

)
=

2
π

γL

ω2
b

(
∂feqm,j

∂p

∣∣∣∣
res

)−1 ∑
σp

∫ Jmax

0
dJ

(
〈g0,j cos ξ〉ξ
〈g0,j sin ξ〉ξ

)
.

 (26)
Here γ  has been taken as zero, i.e. no exponential growth/
decay is assumed. Note that γL  does not depend on the 
amplitude since the mode energy density Λω scales as 
h2
ω. It is easy to verify that γL  is the linear growth rate in the 

absence of dissipation, i.e. γd = 0. Indeed, the linear solu-

tion of the Vlasov equation is g0,j = − 1
2

∂feqm,j

∂p

∣∣∣
res

ω2
b

p−i0+ , so that 

�L1 =
2h2

ω

ω2
b

∫
R dp�g0,j = −πh2

ω
∂feqm,j

∂p

∣∣∣
res

. Substituting this 

into equation (24) yields the growth rate γ = γL − γd, where 
γL  is defined above. It appears that γ = γL  when γd = 0, so 
that γL  can be interpreted as a linear growth rate in the absence 
of dissipation.

4. Stability analysis. Secondary modes

4.1. Filtered solution

If f 0,j  has no ξ-dependence, either because p � ωb (thermal 
particles) or f 0,j  is averaged over ξ (filtered solution), the solu-
tion of equation (9) is simply
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fj,kω = − l
δω − lp + i0+

〈
∂f0,j

∂p
〉
ξ

hkω . (27)

Using equations (7) and (8), we obtain

L (δω, l) =


−l2 −

∑
j

ω2
pj

∫

R

l
δω − lp + i0+

〈
∂f0,j

∂p
〉
ξ

dp


 |hkω|2.

 (28)
For thermal background, f 0,j  is given by a non-shifted 

Maxwellian, f M
j = 1

(2π)1/2VTj
e−V2/2V2

Tj with VTj =
√

Tj/mj  being 

the thermal velocity. Hence, the dispersion relation L (δω, l) = 0 

for the background electrons and ions reads 1 −
∑

j=e,i
ω2

pj

ω2
tj
  ∫

R
dς

(2π)1/2 e−ς2/2 ωtjς
ω−ωtjς+i0+ = 0, where ωtj = kVTj  is the transit 

frequency. For a mode close to marginality γ = �ω � ωr = �ω, 
and in the large frequency limit ω ∼ ωpj � ωtj, we can apply 
the Sokhotski–Plemelj formula to obtain approximately 

1
ω−ωtjς+i0+ � 1

ω

(
1 +

ωtjς
ω

)
− iπδ (ω − ωtjς), where δ denotes 

the Dirac delta function. Hence, an approximate dispersion 

relation becomes 1 −
∑

j=e,i

[
ω2

pj

ω2 − i
(
π
2

)1/2 ωω2
pj

ω3
tj

e−ω2
pj/2ω2

tj

]
= 0. 

Expanding this with respect to γ/ωr � 1, we find ωr � ωpe 

and γ = −γe, γe =
1
2

(
π
2

)1/2
ωpe

ω3
pe

ω3
te

e−ω2
pe/2ω2

te, where we have 

used the fact that ωpe � ωpi. This is the conventional expres-
sion for the Landau damping rate of the Langmuir wave. Thus, 
the functional for thermal particles can be approximated by

Lj (δω, l) = l2
(
ω2

pj

ω2 + 2i
ωγj

ω2
pj

)
|hkω|2. (29)

j = e, i here indicates main electrons/ions. In the absence of 
thermal particles, this term vanishes. The fast particle contrib-
ution is then

LEP,j (δω, l) = −ω2
pj

[∫

R

l
δω − lp + i0+

〈
∂f0,j

∂p
〉
ξ

dp
]
|hkω|2.

 (30)
In equation  (30) j = fe, fi indicates fast electrons/ions that 
drive the bump-on-tail instability. The total Lagrangian, given 
by equation  (7), has the form L (δω, l) = D (δω, l) |hkω|2, 
where D is the dispersion function. Hence, the dispersion rela-
tion reads

−1 +
∑
j=e,i

(
ω2

pj

ω2 + 2i
ωγj

ω2
pj

)
−

∑
j=fe,fi

ω2
pj

l2

∫

R

l
δω − lp + i0+

〈
∂f0,j

∂p
〉
ξ

dp = 0.

 (31)

4.2. Full solution of the Vlasov/Fokker–Planck—Poisson 
system

4.2.1. Formal solution of the Vlasov/Fokker–Planck equa-
tion. Let us start with the perturbed Vlasov/Fokker–Planck 
equation, equation (9), which we rewrite as

−iδωfjω + p
∂fjω
∂ξ

= ilp
∂f0,j

∂H0
hkωeilξ, (32)

where fjω and p  are now functions of ξ, H0 and σp, while hkω 
is assumed to be a constant. f 0,j  is the primary equilibrium 
distribution function, found in the previous section for the EP 
component (and assumed to be Maxwellian for the electron/
ion background). To simplify the analysis, we split the dis-
tribution function into an adiabatic response and a resonant 
part, i.e.

fjω =
∂f0,j

∂H0
hkωeilξ + gjω , (33)

respectively. Solving equation (32) for gjω, we find

gjω = iδω
∂f0,j

∂H0
hkωeiδωQ

[∫ ξ

−ξb

dξ′

p′
eilξ′−iδωQ′

+ C (σp)

]
,

 (34)
where p′ and Q′ are abbreviations for p (ξ′, H0;σp) and 
Q (ξ′, H0;σp) (note that ξb becomes π for the passing branch). 
Q is defined as

Q (ξ, H0;σp) =

∫ ξ

0

dξ′

p (ξ′, H0;σp)
, (35)

which has an equivalent representation through 
the incomplete elliptic integral of the first kind, 
√

2σp
(
H0 + ω2

b

)−1/2
F
(

ξ
2 , 2ω2

b
H0+ω2

b

)
. C (σp) is a constant of 

integration that is different on each branch of σp and is to be 
determined in next section. The EP Lagrangian is then

LEP,j (δω, l) = ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

∮
dξ
2π

1
p

fjωh∗kωe−ilξ, (36)

where we have used 
∫
R dp

∫ π

−π
dξ
2π =

∑
σp

∫ +∞
−ω2

b
dH0

∮ dξ
2π

1
p. 

Equation (36) can be split into the adiabatic and resonant parts, 
LEP,j (δω, l) = Lad,j (δω, l) + Lres,j (δω, l), by substituting 
equation  (33). It can be shown that the energy exchange 
between waves and particles is given by the imaginary part of 
LEP,j (δω, l). Hence, the adiabatic response does not contribute 
to the exchange of energy, only Lres,j does. At this stage, C (σp) 
remains to be calculated.

4.2.2. Matching conditions. In the previous section we have 
determined the perturbed distribution function, gjω, in terms 
of the arbitrary constant, C (σp). In this section we introduce 
an angle variable α to determine C, and hence to derive the 
full EP distribution.

To calculate C, we need to maintain the matching proce-
dure. Let us introduce −ξ0 as a starting point in ξ. For passing 
particles the distribution function must have the same value 
at ξ = −ξ0 and ξ = ξ0 for each sign of p . This can be easily 
provided. However, the trapped particle distribution function 
must be matched both, at ξ = ξ0 after half a bounce on the 
interval [−ξ0; ξ0] and again at ξ = −ξ0 at the end of the way 
back to the initial bounce angle. Note that when a particle 
moves from −ξ0 to ξ0, it has a positive momentum p , while 
p  is negative on the return branch, from ξ0 to −ξ0. So both 
branches, σp = ±1, are connected at constant energy H0. To 
simplify the C (σp) calculation, we introduce the following 
variable α instead of ξ for trapped particles:
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α = Ωb

∫ ξ

0

dξ′

p′ , p > 0 (37)

and

α = π − Ωb

∫ ξ

0

dξ′

p′
, p < 0 (38)

with Ωb (H0) =
(∫ ξ0

−ξ0

dξ
π|p|

)−1
 being the bounce frequency 

(ωb is its limit value at the deeply trapped end, i.e. H0 → −ω2
b). 

Here we note

 •  α increases monotonically with ξ along the trapped 
trajectory at given H0. It varies from −π/2 to π/2 for 
ξ ∈ [−ξ0; ξ0], and from π/2 to 3π/2 on the way back, i.e. 
ξ ∈ [ξ0;−ξ0].

 •  α is an angle variable since it spans [−π/2; 3π/2] along 
the closed trapped trajectory.

 •  the choice grants that ξ = ξ (H0,α) is an odd func-
tion of α. It also satisfies ξ (H0,α;σp = +1) =  
ξ (H0,π − α;σp = −1). Hence, the relation between α 
and ξ, given above, can be inverted. Therefore, we find 
it convenient to express gjω as a function of H0 and α 
only; α also contains the information on σp. According 
to Barrow’s theorem, we have dα/Ωb = dξ/p for both 
branches. The exact same expression is valid for passing 
particles, as we will see later in this section.

 •  This procedure guarantees that if gjω is treated as a 
function of α instead of ξ, it is continuous at ξ = ξ0, i.e. 
α = π/2, which leaves the only one constant C to deter-
mine for trapped particles.

gjω then takes the form:

gjω = iδω
∂f0,j

∂H0
hkωei δωΩb

α

[∫ α

−π/2

dα′

Ωb
ei
(

lξ′− δω
Ωb

α′
)
+ C (σp)

]
,

 
(39)

valid for −π/2 � α < 3π/2. We still have to pro-
vide its continuity at ξ = −ξ0 after one bounce, i.e. 
gjω (H0,α = −π/2) = gjω (H0,α = 3π/2), which gives 
immediately

C =

∫ π

−π
dα
Ωb

ei
(

lξ− δω
Ωb

α
)

e−2πi δωΩb − 1
. (40)

Here we have used the fact that limits of integration can be 
shifted for a periodic function, integrated over the length of 
the period (note that periodicity in α is provided by the choice 
of α, while periodicity in ξ is not required). An equivalent 
expression for C can be obtained by the relation

+∞∑
k=1

e2πki δωΩb =
1

e−2πi δωΩb − 1
 (41)

(see appendix A.2 for more detail). Rewriting the resonant 
part of the EP Lagrangian in terms of α, we obtain

Lres,j (δω, l) = 2πiδω · ω2
pj|hkω|2

∫ +∞

−ω2
b

dH0

Ω2
b

∫ π

−π

dα
2π

∂f0,j

∂H0
e−i

(
lξ− δω

Ωb
α
)

[∫ α

−π/2

dα′

2π
ei
(

lξ′− δω
Ωb

α′
)
+ C (σp)

]

 

(42)

for trapped particles (with C (σp) given by equation  (40)). 
Here both, α and α′ have been shifted by π/2 for conve-
nience. Note that α′ can be introduced as an extended angle 
that spans the interval (−∞; π] and hence an integral over 
α′ ∈ [−π/2,α] can be replaced by α′ ∈ (−∞; α].

To consider passing particles, we note that branches 
σp = ±1 are no longer connected. Nevertheless, we still can 
introduce a similar change of variables:

α = Ωb

∫ ξ

0

dξ′

p′ (43)

with Ωb (H0) = σp

(∫ π

−π
dξ

2π|p|

)−1
 being the transit frequency. 

The properties of α (ξ, H0;σp) for passing particles are the 
same as described above for trapped particles. We note that 
the bounce frequency, Ωb, is negative when σp = −1, and 
hence ξ and α rotate in opposite directions. Thus, we arrive at 
the final expression for the resonant Lagrangian of the form:

Lres,j (δω, l) = 2πiω2
pj|hkω|2

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|
∫ π

−π

dα
2π

∂f0,j

∂H0
e−i

(
lξ− δω

Ωb
α
) [∫ +∞

−∞

dα′

2π
ei
(

lξ′− δω
Ωb

α′
)
·Θ [σp (α− α′)] + C (σp)

]
,

 (44)

where Θ is the Heaviside step function. The summation over 
σp applies only to the passing domain with σp being the sign of 
Ωb. This convention will be used throughout the paper, unless 
otherwise stated. To check the validity of equation  (44), 
we address the limit when the trapped particle contrib ution 
becomes negligible, and ξ can be considered as a linear func-
tion of α, i.e. the limit of deeply passing particles. Then we 
recover the solution for thermal particles, found in equa-
tion (28), and the dispersion relation of the bump-on-tail insta-
bility in accordance with equation (31).

4.2.3. Explicit resonance form. To establish a connection 
with the filtered solution, we seek an expression for equa-
tion (44), where resonances are explicit. This representation 
must be valid everywhere in phase space, as we would expect 
to see secondary modes in a region with the largest gradient of 
the primary equilibrium distribution function, f0,j (H0). From 
a technical point of view, we need to re-express equation (34)/
equation (39) and hence the functional equation (44) in a reso-
nant form. This is tricky, but the calculation becomes straight-
forward with the following remark: since the new variable α 
is an angle for both trapped and passing particles, we can seek 
gjω as a Fourier series in α, i.e.

gjω (α, H0;σp) =
∑

n

gj,nω (H0;σp) einα. (45)
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Here the σp dependence is relevant to passing particles only. 
Since the perturbed Hamiltonian is an exponential function of 
ξ, it is also an exponential function of α, but with an infinite 
number of harmonics instead of only one harmonic in ξ:

hω = hkωeilξ =

+∞∑
n=−∞

hnω (H0;σp) einα. (46)

Using dα/Ωb = dξ/p, we come to the following solution of 
the Vlasov/Fokker–Planck equation:

gj,nω = − δω

δω − nΩb + i0+
∂f0,j

∂H0
hnω (47)

and the corresponding resonant Lagrangian:

Lres,j (δω, l) = −ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

δω − nΩb + i0+

∂f0,j

∂H0
|hnω|2,

 (48)
where the perturbed Hamiltonian Fourier components, hnω, 
are

hnω = hkω

∫ π

−π

dα
2π

ei(lξ−nα). (49)

ξ here is a function of (α, H0;σp). We note that n differs from 
l, except for the deeply passing end, H0 → +∞, since α = ξ  
in that case. It can be proved that equations (44), (48) and (49) 
are equivalent (see appendix A.2 for more detail). Adding the 
adiabatic contribution, we have

LEP,j (δω, l) = −ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb

δω − nΩb + i0+
∂f0,j

∂H0
|hnω|2

 (50)
for the total EP Lagrangian. Equation (50) has a form close to 
the filtered dispersion relation but still is an exact solution of 
the problem.

4.2.4. Full secondary mode dispersion relation. When the 
island-like structure is fully accounted for, the dispersion 
function takes two forms. The resonant form is

D (δω, l) = −l2 + l2
∑
j=e,i

(
ω2

pj

ω2 + 2i
ωγj

ω2
pj

)

−
∑

j=fe,fi

ω2
pj

+∞∑
n=−∞

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

nΩb

δω − nΩb + i0+

∂f0,j

∂H0

∣∣hnω
∣∣2

 (51)
with the coefficients hnω defined as

hnω =

∫ π

−π

dα
2π

ei(lξ−nα). (52)

An equivalent non-resonant form reads

D (δω, l) = −l2 + l2
∑
j=e,i

(
ω2

pj

ω2 + 2i
ωγj

ω2
pj

)
+

∑
j=fe,fi

ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

∂f0,j

∂H0

+ 2πi
∑

j=fe,fi

ω2
pj

∑
σp

∫ +∞

−ω2
b

dH0

Ωb

δω

|Ωb|
∂f0,j

∂H0

∫ π

−π

dα
2π

e−i
(

lξ− δω
Ωb

α
)

×
{∫ +∞

−∞

dα′

2π
ei
(

lξ′− δω
Ωb

α′
)
·Θ [σp (α− α′)] + C (σp)

}

 

(53)

(note: equations  (51) and (52)/equation (53) reduces to the 
conventional bump-on-tail dispersion relation, equation (31), 
in the limit of deeply passing particles, i.e. H0 � ω2

b.) Here 
δω is complex and takes the form δω + iγ. γ  corresponds to 
the secondary mode growth/decay rate. D (δω, γ) = 0 pro-
vides the secondary mode dispersion relation. To analyze 
its stability, we consider contours of constant |D (δω, γ)| in 
the (δω, γ) plane [26]. Any root of |D (δω, γ)| corresponds 
to a pole of |D (δω, γ)|−1. For simplicity, we focus on fast 
electrons, dropping the background ion term in the disper-
sion function, as ωpi � ωpe, provided the plasma quasineu-
trality is maintained. The fraction of EPs is assumed to be 
small by default. In [26] we have investigated the Dp , νf ,p and 
l dependencies of the secondary mode growth/decay rate. γ  
as a function of the velocity diffusion and dynamical friction 
rates has been found to be monotonic, and changing the sign 
of γ  in a chosen range of plasma and wave parameters. In 
contrast, γ  versus l, found in [26], has two roots, which pro-
vide the secondary mode stability regions. In figure 8 we plot 
the secondary mode growth/decay rate, γ , against l  =  k/k0, 
based on the full secondary mode dispersion relation, equa-
tions (51) and (52)/equation (53), with f 0,j  found as a solution 
of equation (14) and shown in figure 5. As can be seen from 
the figure, the secondary mode is stable for l  <  lc and l � ls. 
lc and ls are introduced as roots of γ = γ(l) and hence define 
the stability region(s) of secondary modes. lc has been shown 
to grow monotonically with the dynamical friction rate [26] 
in a chosen range of plasma and wave parameters. However, 
this variation of lc with νf ,p is weak in both figure 3 of [26] 
and figure  8 to change the stability region(s) significantly. 
Due to a larger number of poles of |D|−1 in the decreasing 
region of γ  versus l, we introduce two decreasing branches. 
This gives two maximum values of γ  as a function l. Indeed, 
provided ω0/k0 and ω/k  are the primary island and the sec-
ondary mode resonant velocities, we estimate a value of l that 
corresponds to the maximum growth rate of the secondary 
modes from ω/k ≈ ω0/k0 ± 2ωb/k0. The maximum growth 
rate is expected when the secondary mode resonant velocity 
approaches the boundary of the primary island, ±2ωb/k0. This 
can be explained by steepening of the particle distribution in 
the vicinity of the island separatrix due to its flattening in the 
island region in a pure diffusion case as well as its hole close 
to the island O-point in the presence of drag (see figures 5–7 
for the primary equilibrium distribution). As ω ≈ ω0 ≈ ωpe 
to leading order, the latter condition roughly translates into 
1 ± 2ωb/ωpe ≈ k0/k = 1/l, which provides an estimation for 
l for a given island half-width, ωb (0.83 and 1.25 for ωb = 0.1, 
respectively). As can be seen from figure 8, γ  as a function of 
l is non-monotonic with maximums being in accordance with 
these estimations. Adding drag creates a hole at the O-point of 
the island and hence shifts the largest gradient of the EP dis-
tribution closer to the island center, which, in turn, decreases 
the stationary point of γ = γ(l).

The other parameter we can vary is the bounce frequency 
of deeply trapped particles that characterizes the width of the 
island in phase space, 2ωb. We plot γ  against ωb for different 
friction rates (figure 9) and in a pure diffusion case for different 
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bulk densities (figure 10). This functional dependence is non-
monotonic and provides a region of marginal stability of 
secondary modes. γ  grows monotonically with ωb, crossing 
the γ = 0 level. Then it reaches maximum and decreases, 
crossing γ = 0 for the second time. Hence, we introduce a 
marginal island half-width, ωb,c, below which γ < 0 and thus 
the mode is stable, as well as a saturation level, ωb,s, where γ  
as a function of ωb has a second root.

The solution has been benchmarked against the full-f  
approach. In figure 10 we plot the secondary mode growth/
decay rate versus ωb for different equilibrium plasma density, 
ne, and the ad-hoc damping rate, γd,0. An analytic solution is 
governed by equations (51) and (52)/equation (53), while the 

COBBLES code in its full-f  version (see in the appendix A.5) 
has been adopted to provide the numerical results. They are 
found to be in good agreement. The benchmarking details are 
given in the appendix A.5. ωb ≈ 0.15ωpe is approximately the 
point after which the comparison could no longer be provided. 
This corresponds to longer times, when the effects outside the 
secondary mode stability analysis start playing a role such as 
mode-mode coupling and the mode non-linear saturation.

5. Summary and conclusions

The purpose of the work presented here is to identify the 
conditions under which an island in phase space, formed by 
trapping of EPs in a plasma wave, is subject to secondary 
instabilities in the presence of collisions. This is a subject 
of relevance to MHD instabilities driven by EPs (EP-MHD) 
in tokamaks such as fishbones, TAEs or EP-driven geodesic 

Figure 5. The ξ-averaged EP distribution function, 〈 f 0,j〉ξ, 
versus p  for arbitrary Dp  and νf ,p, ωb = 0.1ωpe. f 0,j  is normalized 
to neqmk0/ωpe, neqm is the equilibrium density. Thick lines 
indicate the solution of equation (14), which is localized to the 
island vicinity. Thin lines indicate the COBBLES distribution 
function. Diffusion and friction rates in velocity space are 
νd,V = 0.01ωpe and νf ,V = 0 (blue curves), νd,V = 0.01ωpe and 
νf ,V = 0.0216ωpe (red curves). In p  space, these correspond 
to diffusion Dp = ν3

d,V(k0/k1)
2
= 1.6 · 10−5ω3

pe and drag 
νf ,p = ν2

f ,V(k0/k1) = 0/4.0 · 10−4ω2
pe, respectively. νf ,V/νd,V = 2.16.

Figure 6. Same as figure 5 except for the bounce frequency value, 
ωb = 0.07ωpe.

Figure 7. Same as figure 5 except for the bounce frequency value, 
ωb = 0.05ωpe.

Figure 8. The normalized secondary mode growth/decay rate 
versus l in a pure diffusion case (diamond markers) and in the 
presence of drag (circle markers). Solid lines represent the best 
fit line for each case. The bounce frequency at the deeply trapped 
end, ωb/ωp,e = 0.1. The Dp  and νf ,p values and normalization 
have been chosen as in figures 5–7 (Dp = 1.6 · 10−5ω3

pe, 
νf ,p = 4.0 · 10−4ω2

pe/0). The regions of negative γ  correspond to the 
stability regions of secondary modes.
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acoustic modes (EGAMs). The particle dynamics in toroidal 
magnetic configurations is integrable and can be described by 
a set of action/angle variables in 6D phase space. A single 
Hamiltonian resonant perturbation generally leads to the for-
mation of an island-like structure near the resonant surface. 
The dynamics in the vicinity of this island can be reduced 
to a 2D, parametrized by two invariants of motion that lie on 
the resonant surface. Hence, a single EP-MHD mode is inter-
preted as a reduced 2D Hamiltonian dynamics near the island 
in phase space.

A prototype of such dynamics is the bump-on-tail insta-
bility, which arises in 2D space, {position, velocity}. In the 
simplest version, the bump-on-tail instability is a Langmuir 
wave that becomes unstable when the electron/ion distribution 
function exhibits a positive slope near the resonant velocity. 
In the presence of strong enough dissipation, a single wave, 
called here the initial primary wave, evolves towards a steady 
island structure. The electron/ion distribution function, asso-
ciated with the island, represents a ‘perturbed’ equilibrium. 
It has been computed here by solving the Fokker–Planck 
equation. We chose the collision operator as a combination of 
pitch angle scattering, velocity space diffusion and dynamical 
friction. The last term is not negligibly small for ITER like 
parameters and hence needs to be accounted for. The afore-
mentioned dimensionality reduction from 6D to 2D allows 
the Fokker–Planck equation  to be solved in the presence of 
tokamak plasma drifts, not focusing on the idealized purely 
electrostatic slab formulation. This ‘perturbed’ equilibrium 
includes a thin separatrix layer, where collisional effects bal-
ance the free streaming contribution and hence an expansion 
in the small ratio of the diffusion/drag coefficient to ω3

b/ω
2
b  

could no longer be applied. The dynamical friction results in 

a hole close to the island O-point, while diffusion controls 
the boundary layer near the separatrix. This numerical solu-
tion has been successfully benchmarked against an analytic 
solution that is valid in the case of vanishing dissipation, and 
also against the full-f kinetic COBBLES code. The steepening 
of the distribution function near the island separatrix opens 
the way to the emergence of secondary instabilities due to the 
strong positive gradient of the distribution function in velocity 
space in this boundary layer. The ‘perturbed’ equilibrium is a 
true non-linear state: a linear perturbative approach cannot be 
applied whenever the island width is significant. Thus, a sta-
bility analysis that fully accounts for nonlinearities due to the 
island shape has been developed, based on the action/angle 
approach and a variational form of the Maxwell equations. It 
leads to a tractable dispersion relation that we have analyzed 
numerically. The results have been compared with the full 
non-linear solution, provided by the COBBLES code. It has 
been found that the growth rate of a secondary mode is max-
imum when the associated resonant velocity approaches the 
boundary of the primary island, which was an expected result.

A key question in the context of EP-MHD modes is the loss 
of EPs, induced by the non-linear evolution of these modes. 
The bump-on-tail approach we use allows the EP losses to be 
found through the damping contribution of the Lagrangian of 
the primary/secondary modes as well as from the EP drive that 
comes from the slope of the distribution function within the 
island. Losses are related to the instability strength. In the limit 
of strong dissipation where the island width saturates, particle 
losses are moderate and controlled by the boundary layer 
near the separatrix. When dissipation is small, the distribution 
function exhibits structures in phase space that evolve in time. 
Losses are tied to this complex dynamics. One signature of 
this dynamics is frequency chirping, the explanation of which 
is still debated. In the limit of weak drive, the Berk–Breizman 
model is most commonly applied. It is based on the formation 

Figure 9. The normalized secondary mode growth/decay rate 
versus bounce frequency of deeply trapped particles, ωb in the 
presence of drag, νf ,p (solid lines represent the best fit line for each 
case). The p  space diffusion is fixed, Dp = 1.6 · 10−5ω3

pe. The 
primary/secondary wave number ratio, l  =  1.25. The Dp  and νf ,p 
normalization have been chosen as in figures 5–7. In each case 
arrows indicate roots of γ = γ(ωb). The first root, ωb,c, corresponds 
to a critical island half-width, below which the secondary mode is 
stable. While the second root, ωb,s defines a saturation level, above 
which the secondary mode stability is reached.

Figure 10. The secondary mode growth/decay rate against 
ωb in a pure diffusion case, Dp = 1.6 · 10−5ω3

pe (Dp  value and 
normalization have been chosen as in figures 5–7). The primary/
secondary mode number ratio, k0/k  =  4/5. An analytic solution 
(square and diamond markers) is calculated based on equations (51) 
and (52)/equation (53). Solid lines represent the COBBLES growth/
decay rates.
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of clump/hole pairs that move away from the resonant sur-
face in phase space. Although their asymptotic dynamics 
is quite well understood, the formation process of these 
clump/hole pairs is not yet clear. Some recent works [16, 37]  
have proposed that secondary instabilities are triggered, which 
lead to the formation of fine scale structures in phase space, 
and finally to the production of clump/hole pairs.

Our results also can be compared with works [16, 37], 
where less dissipative solutions have been addressed. In 
the latter case, the distribution function evolves towards an 
unmodulated rectangular shape in velocity space, which is 
quite different from the island-like structure. As in [16, 37], 
a threshold in the width of the region where the distribution 
function flattens must be exceeded to see the appearance of 
secondary instabilities. The threshold found in [16, 37] cannot 
be quantitatively compared with the one found in this paper 
since it is dictated by the island width in the present work, 
while the plateau is unmodulated in the spatial direction in the 
low dissipation case. Nevertheless, the orders of magnitude 
are the same. One important result of the present study is the 
subharmonic character of the secondary wave compared with 
the primary mode. Secondary wave numbers are found to be 
smaller than the primary wave number in qualitative agree-
ment with previous works on BGK mode stability. This may 
prevent the onset of a secondary wave if the primary wave 
number is already the lowest available. One may interpret this 
property as a certain robustness of an island-like structure in 
the presence of collisions, which would explain why no/slow 
chirping is observed in collisional situations. We also note that 
turbulence has been proposed as a mechanism that quenches 
clump/hole formation [28].

The present work is subject to some limitations. The radial 
mode structure [38, 39] has not been addressed in this paper. 
[39] shows that the narrow structure of the model Alfvén 
mode eigenfunction decreases the resonance island width 
and hence, in principle, can decrease the secondary mode sta-
bility threshold, ωb,c. In contrast, as stated above, the effect of 
drag increases the marginal island width. Hence, ωb,c would 
be determined by a competition of these two effects. In addi-
tion, the effects of finite orbit width (FOW) and finite Larmor 
radius (FLR) of EPs on TAEs are left beyond the scope of the 
paper. Following [40], the FOW can be introduced perturba-
tively by Taylor expanding the electrostatic potential about the 
guiding centre provided the characteristic length scale of the 
variation of the electric field is larger than the Larmor radius. 
The FOW effects are shown to be stabilizing for TAEs local-
ized in a plasma core and destabilizing for global TAEs at the 
tokamak edge [41]. Although the secondary instability onset 
has been demonstrated, it does not provide an explanation of 
the initial erosion of the island separatrix that ultimately leads 
to the asymptotic dynamics, proposed by Berk and Breizman. 
However, more rigorous derivations are required to provide 
the actual picture. Furthermore, the stability of a single phase 
space island has been investigated here, taking as an assump-
tion that a single primary mode exists. In a tokamak for 
instance it corresponds to a single isolated EP-MHD mode. 
In a more general case, there can be a number of resonant 
primary harmonics. Resonating on the same rational surface, 

they maintain the island-like configuration, but deform the 
separatrix. In contrast, when harmonics resonate on different 
surfaces, several islands are formed and can overlap according 
to the Chirikov criterion. Inside the overlapping region, sto-
chasticity is generated. The resulting transport can in principle 
flatten the distribution function between two adjacent rational 
surfaces and thus prevent secondary instabilities in the sto-
chastic layer that is thus formed. According to some theories, 
this is relevant to a case in ITER advanced scenarios when 
several TAEs arise simultaneously. This situation is left for 
future work.
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Appendix

A.1. Primary equilibrium: numerical grid

The numerical solution technique for the Fokker–Planck 
equation, equation  (14)/equation (18), with the matching 
conditions at the trapped/passing boundary, given in sec-
tion 3, is presented in this appendix. This is a 2D/1D differ-
ential equation in {ξ, H0;σp} / {H0;σp}. The Dp  and νf ,p are 
taken as parameters. To provide the Maxwellian behavior 
far from the island in phase space, we require a zero p  and 
hence H0 gradient of g0,j  at p → ±∞. In ξ space, we simply 
impose g0,j (−ξb) = g0,j (ξb) (ξb = π for a branch of passing 
particles). To solve equation  (14)/equation (18), we apply 
the shooting method in H0 direction, reducing it to a matrix/
algebraic equation for any H0. Applying the finite difference 
scheme to H0 space (central difference to the equation and for-
ward/backward difference at the edges of H0 space), we obtain 
the following matrix equation:

PPPσ
j gggσ

j+1 +QQQσ
j gggσ

j +RRRσ
j gggσ

j−1 +AAAσ
j = 0 (A.1)

for the vector solution, gggj, we seek at each H0 grid point, j  
(note: for equation  (18) gggj becomes a scalar, gj , and equa-
tion  (A.1) should be understood as an algebraic at each j ). 
σ = ±1 for the passing and σ = |σ| for the trapped branches 
(note: |σ| denotes ±1/+ 1 for the trapped branch of equa-
tion  (14)/equation (18), respectively). PPPσ

j , QQQσ
j  and RRRσ

j  are 
square diagonal matrices of size Nξ × Nξ, and AAAσ

j  is the right 
hand side vector; both, gggj and AAAσ

j , are of length Nξ (Nξ is a 
number of points in ξ direction). For the reduced ξ-averaged 
Fokker–Planck equation, equation (18), all the coefficients in 
equation (A.1) as well as the right hand side become scalars.
The left boundary in a general form in H0 space (i.e. for deeply 
trapped particles at j   =  0) reads
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P̂̂P̂P|σ|,t
0 ggg|σ|,t

0 + Q̂̂Q̂Q|σ|,t
0 ggg|σ|,t

1 + R̂̂R̂R|σ|,t
0 ggg|σ|,t

2 + Â̂ÂA|σ|,t
0 = 0. (A.2)

To set the j   =  0th element, we assume a linear relation 
between ggg at j th and ( j + 1)th grid points, and hence we write

ggg|σ|,tj = ααα
|σ|,t
j ggg|σ|,t

j+1 + βββ
|σ|,t
j , (A.3)

from the side of trapped particles. Here ααα|σ|,t
j  is the square matrix 

and βββ|σ|,t
j  is a vector of length Nξ. Combining equations (A.1) 

and (A.3), we obtain the following recurrence relation:

ααα
|σ|,t
j = −

[
QQQ|σ|,t

j +RRR|σ|,t
j ααα

|σ|,t
j−1

]−1
PPP|σ|,t

j ,

βββ
|σ|,t
j = −

[
QQQ|σ|,t

j +RRR|σ|,t
j ααα

|σ|,t
j−1

]−1 [
RRR|σ|,t

j βββ
|σ|,t
j−1 +AAA|σ|,t

j

]
.

 

(A.4)

Combining equations  (A.2)–(A.4), we calculate ααα|σ|,t
0  and 

βββ
|σ|,t
0  at the deeply trapped end. Then using equation (A.4) we 

find all ααα|σ|,t
j s with βββ|σ|,t

j s up to the trapped/passing boundary, 

H0 = Hc
0  (j   =  Np 1), as shown in figure A1. We apply the exact 

same algorithm to the passing branch. The right boundary 
condition, i.e. for deeply passing particles at j   =  Np 2, is

P̂̂P̂Pσ,p
Np2

gggσ,p
Np2

+ Q̂̂Q̂Qσ,p
Np2

gggσ,p
Np2−1 + R̂̂R̂Rσ,p

Np2
gggσ,p

Np2−2 + Â̂ÂAσ,p
Np2

= 0. (A.5)

Employing

gggσ,p
j = ααασ,p

j gggσ,p
j−1 + βββσ,p

j , (A.6)

and substituting this into the initial equation, equation (A.1), 
we come to

ααασ,p
j = −

[
PPPσ,p

j ααασ,p
j+1 +QQQσ,p

j

]−1
RRRσ,p

j ,

βββσ,p
j = −

[
PPPσ,p

j ααασ,p
j+1 +QQQσ,p

j

]−1 [
PPPσ,p

j βββσ,p
j+1 +AAAσ,p

j

]
.

 
(A.7)

Combining equations (A.5)–(A.7), we calculate ααασ,p
Np2

 and βββσ,p
Np2

 
at the deeply passing end and using equation (A.7) we find all 
ααασ,p

j s with βββσ,p
j s up to H0 = Hc

0  (j   =  0) from the passing side 
(see figure A1). Once all ααασ

j s and βββσ
j s are obtained from the 

passing and the trapped side (the trapped/passing boundary 
itself, j   =  Np 1 for trapped and j   =  0 for passing particles, 
is excluded from the scheme), we apply the matching con-
ditions, introduced in section 3. To solve equation  (14), we 
require both σ branches of the solution we seek to be in a class 

CCC1 (i.e. 
∑

σ σgσ,p =
∑

|σ| |σ| g|σ|,t, 
∑

σ gσ,p =
∑

|σ| g|σ|,t  and 
similar relations for the first derivatives), which translates into

ggg+1,p
0 = ggg+1,t

0 ≡ ggg+
c ,

ggg−1,p
0 = ggg−1,t

0 ≡ ggg−
c ,

1
∆H0,t

[
3ggg+1,t

Np1
− 4ggg+1,t

Np1−1 + ggg+1,t
Np1−2 + 3ggg−1,t

Np1
− 4ggg−1,t

Np1−1 + ggg−1,t
Np1−2

]

=
1

∆H0,p

[
−ggg+1,p

2 + 4ggg+1,p
1 − 3ggg+1,p

0 − ggg−1,p
2 + 4ggg−1,p

1 − 3ggg−1,p
0

]
,

1
∆H0,t

[
3ggg+1,t

Np1
− 4ggg+1,t

Np1−1 + ggg+1,t
Np1−2 − 3ggg−1,t

Np1
+ 4ggg−1,t

Np1−1 − ggg−1,t
Np1−2

]

=
1

∆H0,p

[
−ggg+1,p

2 + 4ggg+1,p
1 − 3ggg+1,p

0 + ggg−1,p
2 − 4ggg−1,p

1 + 3ggg−1,p
0

]

 (A.8)

to find the boundary elements, ggg±
c . The uniform grid has been 

assumed here, ∆H0,p,t  are the step sizes in H0 space for the 
passing and trapped branches, respectively. For the reduced 
Fokker–Planck equation, equation (18), whose trapped solu-
tion is σ-independent due to ξ averaging, the matching condi-
tions at Hc

0 reduce to 
∑

σ σgσ,p = 0, 
∑

σ gσ,p = 2g|σ|,t and ∑
σ ∂gσ,p/∂H0 = 2∂g|σ|,t/∂H0 that translate into

g|σ|,tNp1
= g+1,p

0 = g−1,p
0 ≡ gc,

2
∆H0,t

[
3g|σ|,t

Np1
− 4g|σ|,t

Np1−1 + g|σ|,t
Np1−2

]

=
1

∆H0,p

[
−g+1,p

2 + 4g+1,p
1 − 3g+1,p

0 − g−1,p
2 + 4g−1,p

1 − 3g−1,p
0

]
,

 (A.9)

to find the boundary element, gc. Substituting equations (A.3) 
and (A.6) into (A.8)/equation (A.9) gives us a relation for 
ggg±

c /gc. Once ggg±
c /gc is found, we reconstruct the rest solution 

elements from equations  (A.3) and (A.6) up to the trapped/
passing edges. The described solution technique is illustrated 
in figure A1 for equation (18).

Figure A1. A schematic representation of the solution technique.

Figure A2. Time evolution of the amplitudes of Fourier modes 
k  =  mk1 of the E-field. Inset: zoom near the time of reversal 
of evolution of the mode m  =  5. In the inset, the two dashed 
lines correspond to growth/decay rates γ5,L = −0.0008 and 
γ5,sec = 0.012. The diffusion and the slowing down rates are 
νd,V = 10−2 and νf ,V = 0, respectively.
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A.2. Resonant and non-resonant representation of the dis-
persion relation

To show that both resonant equations (51) and (52) and non-
resonant equation  (53), representations of the dispersion 
function are equivalent, we compare resonant parts of the 
perturbed distribution function, gjω, given by equations (34)/
(39),(40) and (45), (47). Substituting equations (47) and (49) 
into (45) gives

gjω (α, H0;σp) = −
∑
n∈Z

δω

δω − nΩb + i0+

∂f0,j

∂H0
hkωeinα

∫ π

−π

dα′

2π
ei(lξ′−nα′).

 (A.10)
Using the Landau relation, which is

1
δω − nΩb + i0+

= −i
∫

R+

ei(δω−nΩb)σdσ, (A.11)

and then applying the Shah function relation:
∑
n∈Z

ein(α−α′−Ωbσ) = 2π
∑
k∈Z

δ (α− α′ − Ωbσ − 2πk) (A.12)

we modify the above formula to obtain

gjω (α, H0;σp) = 2πiδω
∂f0,j

∂H0
hkω

∑
n∈Z

∫

R+

dσ

∫ π

−π

dα′

2π
ei(lξ′+δωσ)δ (α− α′ − Ωbσ − 2πn),

 (A.13)
which we can rewrite as

gjω (α, H0;σp) = 2πi
δω

Ωb

∂f0,j

∂H0
hkω

∑
n∈Z

∫ 3π/2

−π/2

dα′

2π
exp

[
i
(

lξ′ + δω
α− α′ + 2πn

Ωb

)]
·Θ

(
α− α′ + 2πn

Ωb

)
.

 (A.14)

Here we have used a limit operation for a periodic function 
to change the limits of integration, and n has been replaced 
by  −n due to periodicity. δ and Θ are used for the Dirac delta 
and the Heaviside step functions, respectively. From now we 

assume Ωb > 0, the same analysis can be produced for nega-
tive Ωb values. As α,α′ ∈ [−π/2; 3π/2], α− α′ ∈ [−2π; 2π]. 
For n � −1 the Heaviside function is always zero. If n  =  0, 
then α′ ∈ [−π/2;α]. If n  =  1, the Θ-function is always one. 
Therefore,

gjω (α, H0;σp) = 2πi
δω

Ωb

∂f0,j

∂H0
hkω

∫ α

−π/2

dα′

2π
exp

[
i
(

lξ′ + δω
α− α′

Ωb

)]

+ 2πi
δω

Ωb

∂f0,j

∂H0
hkω

+∞∑
n=1

∫ π

−π

dα′

2π
exp

[
i
(

lξ′ + δω
α− α′ + 2πn

Ωb

)]
.

 (A.15)
Applying equation (41), we obtain

gjω (α, H0;σp) = 2πi
δω

Ωb

∂f0,j

∂H0
hkω

{∫ α

−π/2

dα′

2π
exp

[
i
(

lξ′ + δω
α− α′

Ωb

)]

+

∫ π

−π
dα′

2π exp
[
i
(

lξ′ + δω α−α′

Ωb

)]

exp
(
−2πi δωΩb

)
− 1



 ,

 

(A.16)

which is exactly equations (39) and (40).

A.3. Wave-particle energy exchange

To calculate energy exchanged between waves and par-
ticles, δW , we need to address the imaginary part of 
the Lagrangian, given by equation  (6). Hence, using 
the final dispersion relation, equation  (51), we write 
δW = −2δω�D|hkω|2. Applying the Sokhotski–Plemelj 
form ula, 1

δω−nΩb±i0+ = p · V · 1
δω−nΩb

∓ iπδ (δω − nΩb) to 
real δω, we come to

δW = −2πω2
pjδω

+∞∑
n=−∞

n
∑
σp

∫ +∞

−ω2
b

dH0
∂f0,j

∂H0
|hnω|2δ (δω − nΩb).

 (A.17)

This energy exchange is negative, provided ∂f0,j

∂H0
> 0, i.e. the 

secondary mode drive is possible, which we could see from 
the secondary mode stability analysis.

A.4. Angle variable for trapped and passing particles

It is convenient to introduce a trapped parameter defined as

κ2 =
2ω2

b

H0 + ω2
b

. (A.18)

The passing domain corresponds to 0 � κ � 1, while the 
trapped domain is determined by 1 � κ < +∞. The bounce 
frequency is then given by the relation Ωb = 1/2τ (κ) for 
trapped and by Ωb = σp/2τ (κ) for passing particles, where 
the function τ  is such that

τ (κ) =
2
π

K
(
κ2) , 0 � κ � 1

τ (κ) =
2
π

1
κ

K
(

1
κ2

)
, 1 � κ < +∞.

 
(A.19)

Here K is the complete elliptic integral of the first kind. As 
expected, the bounce/transit period becomes large near the 
trapped/passing boundary, κ = 1, since K (κ) � − 1

2 ln |1 − κ| 
for |1 − κ| � 1. A useful expression for α in the upper quad-
rant 0 � ξ � π/2, 0 � α � π/2 is

Figure A3. Spatial average of the distribution function. Vertical 
lines indicate phase velocities Vm = ωm,L0 of modes km = mk1. The 
diffusion and the slowing down rates are νd,V = 10−2 and νf ,V = 0, 
respectively.
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α =
F
(
ξ/2,κ2

)
F (π/2,κ2)

, 0 � κ � 1

α =
π

2
F
(
sin−1 [κ sin (ξ/2)] ,κ−2

)
F (π/2,κ−2)

, 1 � κ < +∞.
 (A.20)

Here F is the incomplete elliptic function of the first kind, 

defined as F (δ, m) =
∫ δ

0
dδ′√

1−msin2δ′
. This relation can for-

mally be inverted to provide a link between the angles ξ and α. 
Using the relation between complete and incomplete elliptic 
integrals, K (m) = F (π/2, m), we rewrite equation (A.19) as

sin

(
ξ

2

)
= sn

(τα
2

,κ2
)

, 0 � κ � 1

sin

(
ξ

2

)
=

1
κ

sn
(
κτα,

1
κ2

)
, 1 � κ < +∞

 
(A.21)

valid for all αs and ξs. The function sn (δ, m) is the Jacobian 
elliptic function that coincides with the trigonometric sin δ for 
m � 1. One recovers that ξ = α for deeply passing particles 
κ = 0, and ξ = ξ0 sinα for deeply trapped particles κ → ∞. 
ξ0 here is the bounce angle, sin (ξ0/2) = 1/κ. Note however 
that the function differs significantly from the sine function 
for barely trapped and passing particles κ ∼ 1.

A.5. COBBLES simulation

The primary equilibrium distribution function and the sec-
ondary mode growth/decay rate, based on equations  (51) 
and (52)/equation (53), have been benchmarked against the 
COBBLES code, which is to be described in this appendix.

We cast the Berk–Breizman model [29] in a many-wave 
form. We consider a 1D plasma with a distribution function, 
f (t, x, V), in a box length L = 2π/k1 with periodic boundary 
conditions in x direction (k1 is the lower secondary mode 
number). To ensure quasineutrality, we assume a background 
population of the opposite charge with a distribution function 
f (t, V), which is the spatial average of f . In the initial condi-
tion, the velocity distribution,

f0 (V) ≡ f (t = 0, V) = f e,i
0 (V) + f fe,fi

0 (V) , (A.22)

comprises a Maxwellian bulk,

f e,i
0 (V) =

ne,i

VTe,i
√

2π
e−

1
2

(
V

VTe,i

)2

, (A.23)

and a beam of high energy particles,

f fe,fi
0 (V) =

nfe,fi

VTfe,fi
√

2π
e−

1
2

(
V−Vb
VTfe,fi

)2

, (A.24)

where ne,i and nfe,fi are bulk and beam electron/ion densities, 
VTe,i  and VTfe,fi are thermal velocities of bulk and beam particles, 
and Vb is the electron/ion beam drift velocity. The evolution 
of a full electron/ion distribution is described by equation (4), 
coupled to the displacement current equation (DCE),

∂E
∂t

= −
eZj

ε0

∫
V ( f − f0) dV − 2γdE, (A.25)

to provide self-consistency. The DCE is used here instead 
of Poisson’s equation  to find the time dependent E-field, 
E = −∂Φ/∂x. γd is the ad-hoc damping rate, defined as 
in [25]. In the limit of γd = 0, equation  (A.25) is equiva-
lent to Poisson’s equation. The average electric field, E0, 
is kept zero at all times. The term proportional to γd is an 
external wave damping, which is taken to be model for all 
linear dissipative mechanisms of the wave energy to the 
background plasma [31]. Note that unlike previous works, 
γd is allowed to depend on the wave number. Due to peri-
odicity in x, we seek a solution, written as a Fourier series 
in x such that E (x, t) = Ek (t) eikx + c.c. and similarly for f . 
Here we have assumed a single mode of the wave number k, 
which corresponds to the situation of an isolated single TAE. 
For k �= 0, equation  (A.25) yields the time evolution of the 
wave. In the initial condition we apply small perturbations, 
f (t = 0, x, V) = f0 (V)

[
1 +

∑
k εk cos (kx + φk)

]
, where 

each φk  is a random phase. The initial value of E is obtained 
by solving Poisson’s equation. The right hand side of equa-
tion  (4) is the adopted 1D projection of the Fokker–Planck 
operator [24, 30] that includes both drag and diffusion. It is 
given by equation (12), rewritten in V  space.

To perform numerical simulations of the Berk–Breizman 
model, equations (4), (12) and (A.25), we adopt the COBBLES 
code in its full-f  version (COBBLES stands for COnservative 
Berk–Breizman semi-Lagrangian Extended Solver). It has been 
developed in previous works [8, 32–34], based on the cubic-
interpolated-propagation (CIP) scheme [35] and the Strang 
splitting method [36]. The normalization is as follows: time is 
normalized to the total electron/ion plasma frequency ωp, dis-
tance to the smaller secondary wave number k1, density to the 
total plasma density neqm, and electric field to mjω

2
p/ (eZjk1), 

where ω2
p = neqmeZj

2/ (ε0mj). All quantities like f  are sam-
pled on uniform Eulerian grids with Nx and NV  grid points 
in x and V  directions, respectively, within the computational 
domain { (x, V)| 0 � x < L = 2π/k1, Vmin � V � Vmax}. The 
boundary conditions are periodic in x direction and fixed in V  direc-
tion. For the simulation, we have chosen Vmin = −8, Vmax = 18, 
Nx  =  256, NV = 2048 and a time step width ∆t = 0.05. The 
simulated species is thermal electrons with the fast electron 
component included, and the ions act as a neutralizing spe-
cies (the opposite situation is also allowed). To benchmark 
the solution of equation (14), which is localized to the island 
vicinity, against the COBBLES solution, valid in a full range 
of V , we need to set the f 0,j  behavior far from the island, i.e. 
∂feqm/∂p|res. As equation  (4) is written in the absence of 
plasma drifts, p  here needs to be understood as k0V . Provided 

p  is normalized to ωpe, ωpe ∂feqm/∂p|res, which is equal to 

ωpe ∂feqm/k0∂V|Vph
, reads

1√
2πV̂Tfe

e
− 1

2

(
V̂ph−V̂b

V̂Tfe

)2

V̂b − V̂ph

V̂2
Tfe

in units of nfek0/ωpe. Hats here indicate that the corresponding 
quantities have been normalized to ωpe/k0. The parameters for 
the initial bump-on-tail distribution are VTfe = 0.72ωpe/k0, 
Vb = 1.2ωpe/k0, Vph = 0.9364ωpe/k0 ≈ ωpe/k0 and nfe/neqm = 0.05.   
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The COBBLES distribution function results are shown in  
figures 5–7 and are found to be in agreement with the localized 
solution in the vicinity of the phase space island. The dissipa-
tion is arbitrary set-up such that only one mode, namely mode 
m  =  4 (with km = mk1), is linearly unstable for f   =  f 0. We choose 
γd (k4) = 0 and γd (k) = 0.038 for k �= k4. We define ωm,L0 
and γm,L0 as the linear frequency and growth rate of the mode of 
wave number km = mk1 in the absence of dissipation and col-
lisions. Note that γm,L0 is proportional to the slope of f 0 at the 
resonant velocity Vm = ωm,L0/km, γm,L0 = (π/2) ∂f0/∂V|Vm

. 
We define the full linear growth rate γm,L as the linear growth rate 
including the effects of collisions and dissipation. In the col-
lisionless limit, when γm,L � ωm,L0, the full linear growth rate 
reduces to γm,L = γm,L0 − γd (km). With the parameters listed 
above, γ4,L = 0.034 and γm,L < 0 for all m �= 4. In particular, 
γ3,L = −0.009 and γ5,L = −0.0008. Figure A2 shows the time 
evolution of the amplitudes of modes m  =  3, 4, 5, 8 and 12, which 
are the dominant modes for the time interval t  <  1000. Figure A3 
shows snapshots of the velocity distribution near the phase veloci-
ties of modes m  =  3, 4 and 5. We observe that mode m  =  4 grows 
linearly up to t ≈ 300, after that it saturates. By comparing this 
with a control simulation, where all other (m �= 4) modes are artifi-
cially filtered out, we have observed that the time evolution of both 
amplitude and velocity distribution are not significantly impacted 
by the presence of other modes until ∼ 1000. Modes m  =  5 and 
m  =  3 decay linearly until t ≈ 200 and t ≈ 320, respectively, after 
that they grow. This timing of reversal coincides with the time 
when the steep slopes at the boundaries of the BGK island, formed 
by mode m  =  4, reach the phase velocities of modes m  =  3 and 
m  =  5. These results are qualitatively consistent with the secondary 
instability theory. As can be seen in figure A2, the growth rate of 
m  =  5 varies continuously around t  =  300. However, it does sta-
bilize at g5,sec = 0.012 for a finite time interval, 380  <  t  <  400. 
Figure A2 includes the amplitudes of modes 8 and 12. Since they 
are harmonics of the dominant mode m  =  4 and since the growth 
rate of m  =  8 is double that of m  =  4, we interpret their growth 
as the result of the fluid-like mode-mode coupling (probably in a 
class of modular-parametric instabilities), rather than the result of 
kinetic interactions between particles and waves. In the simulations 
of figures A2 and A3, the primary mode would be in a regime of 
constant-amplitude steady-state, if the secondary modes were not 
present. It is only in the presence of the other modes (including sec-
ondary instabilities), that the regime changes to a chaotic regime 
with strong amplitude oscillations and some chirping.
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