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Here we present details of an operator-split, implicit–explicit numerical scheme for the 
solution of the gyrokinetic-Poisson system of equations in the local limit. This scheme has 
been implemented in a new code called stella, which is capable of evolving electrostatic 
fluctuations with full kinetic electron effects and an arbitrary number of ion species in 
general magnetic geometry. We demonstrate the advantages of this mixed approach over a 
fully explicit treatment and provide linear and nonlinear benchmark comparisons for both 
axisymmetric and non-axisymmetric magnetic equilibria.

© 2019 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

The turbulent transport of particles, momentum and energy places a fundamental constraint on the confinement – and 
thus performance – of magnetic confinement fusion (MCF) plasmas. This turbulence is challenging to simulate for a number 
of reasons: the collisional mean free path in MCF plasmas is often larger than the system size, necessitating a kinetic 
treatment; the presence of a strong mean magnetic field makes the turbulence highly anisotropic; and the characteristic 
space–time scales of the turbulence are much smaller than the space–time scales associated with the mean density, flow and 
temperature. On the face of it, one must thus resolve six-dimensional phase space dynamics involving multiple space–time 
scales spanning several orders of magnitude.

However, by exploiting the anisotropy of the turbulence and scale separation in space and time, it is possible to reduce 
the complexity of the problem considerably. This is the approach taken by δ f -gyrokinetics [1,2], which we describe in detail 
in Sec. 2. In brief, it eliminates the fast gyro-motion time scale and the gyro-angle phase space variable, and it separates the 
space–time scales of mean and fluctuating quantities. The development of gyrokinetics (and the gyrofluid models derived 
from it) and its subsequent numerical implementation in a wide range of codes [3–12] has facilitated a leap forward in 
our ability to accurately model, predict and understand turbulent transport in MCF plasmas. Given the proliferation of 
gyrokinetic codes and their growing success in describing experimental behavior, it is worth considering if there is a need 
for yet another gyrokinetic code.

Most of the existing δ f -gyrokinetic codes have been developed to simulate tokamak plasmas, with only a handful 
[13–17] capable of simulating non-axisymmetric magnetic field configurations. Indeed, there is a relative paucity of sim-
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ulations for stellarators, and most of them are linear simulations in the local (or flux-tube) limit with Boltzmann electrons. 
As it is beneficial to have a diversity of numerical approaches to the same class of problems, we have developed a new 
code stella with the goal of enabling routine and efficient simulation of turbulence in stellarators. The numerical scheme 
employed in stella is distinguished from other gyrokinetic codes through its use of an operator-split, implicit–explicit 
time advance scheme with strong-stability-preserving methods to maximize the allowable time step size for both linear 
and nonlinear calculations. There are only a handful of kinetic/gyrokinetic codes that employ implicit–explicit time advance 
methods (cf. [4,8,18,19]); as such, stella is expected to be a useful tool for simulations of turbulence in both tokamaks 
and stellarators.

The flux tube approach is very efficient for simulating plasma turbulence in an axisymmetric magnetic field because a 
single flux tube spanning a 2π domain in poloidal angle effectively samples an entire flux surface. For a non-axisymmetric 
confining field, this is not the case: Because a flux tube is asymptotically small in the local limit, it in principle must extend 
infinitely far along a magnetic field line as it ergodically samples an entire flux surface. As this is not feasible, one must 
either be content with sampling a fraction of a flux surface or one must go beyond the flux tube approach to simulate a flux 
annulus encompassing a full flux surface. To our knowledge only a few codes [20,15,17] currently allow for the simulation 
of an entire flux surface, and results of this type are few and far between. While the version of stella documented here 
employs the flux tube approximation, the numerical scheme has been formulated with the aim of extending the code to 
treat the full flux annulus. This is discussed in more detail when the algorithm is introduced in Sec. 5.

The paper is organized as follows: In Sec. 2 we describe the gyrokinetic model and state the governing equations. We 
then give an overview of the coordinates used in stella and the options available for specifying magnetic geometry in 
Sec. 3. The normalized simulation equations are provided in Sec. 4 before detailing the numerical scheme employed by
stella in Sec. 5. We then compare simulation results from stella with those from the widely-benchmarked gyrokinetic 
code GS2 in Sec. 6 before summarizing and discussing possibilities for future work on stella in Sec. 7.

2. Model equations

Derivations of the δ f gyrokinetic model employed by stella are abundant in the plasma physics literature (cf. [1,2,
21–23]) and so we provide only a brief overview of its orderings and assumptions here. The essence of gyrokinetics is an 
assumption that all dynamics of interest are slow compared to particle gyration about a mean magnetic field. This allows 
one to usefully split particle motion into a rapid, approximately circular orbit about the magnetic field and the movement 
of this orbit’s centre, called the guiding centre; i.e., particle position r is given by r = R + ρ , with R the guiding centre 
position, and ρ = b̂ × v/� the gyroradius vector. Here, b̂ is the unit vector pointing along the mean magnetic field, v is 
the particle velocity, and � = ZeB/mc is the frequency of gyration about the mean field, with Z charge number, e proton 
charge, B magnetic field strength, m particle mass, and c speed of light. After making this split, one averages over the rapid 
gyration to eliminate the gyration angle as a phase space variable. Gyrokinetics thus describes the motion of charged rings 
as they stream along the mean magnetic field and slowly drift across it.

We restrict our attention to plasmas with sub-sonic mean flows and electrostatic fluctuations so that to lowest order the 
electric field E = −∇ϕ , with ϕ the fluctuating electrostatic potential. These constraints are not required by the gyrokinetic 
model and can thus be relaxed in future work. The use of δ f gyrokinetics does rely on a separation of space–time scales 
between the plasma equilibrium and the turbulent fluctuations. In particular, the particle distribution function for species s, 
denoted f s , is decomposed into a mean component, Fs , and a fluctuating component, δ f s , i.e., f s = Fs + δ f s , and the 
following orderings are imposed:

δ f s

f s
∼ ωs

�s
∼ ρs

L
∼ k‖

k⊥
∼ k‖ρs ∼ eϕ

Ts
∼ ε � 1, (1)

where ε is the fundamental ordering parameter in gyrokinetics, ω is a characteristic fluctuation frequency, ρ = vth/�

is thermal gyroradius, vth = √
2T /m is thermal speed, T is temperature, L is a characteristic length associated with the 

equilibrium, and k‖ and k⊥ are characteristic fluctuation wave numbers along and across the mean magnetic field.
Upon gyro-averaging the Vlasov equation and applying the gyrokinetic ordering given above, one obtains the lowest-

order, electrostatic gyrokinetic equation for the distribution of guiding centres gs(R, v‖, μ, t) .= 〈δ f 〉R:

∂ gs

∂t
+ v‖b̂ · ∇z

(
∂ gs

∂z
+ Zse

Ts

∂ 〈ϕ〉R

∂z
Fs

)
− μs

ms
b̂ · ∇B

∂ gs

∂v‖
+ vMs ·

(
∇⊥gs + Zse

Ts
∇⊥ 〈ϕ〉R Fs

)
+ 〈vE〉R · ∇⊥gs + 〈vE〉R · ∇∣∣

E Fs = 0,

(2)

where, unless noted otherwise, derivatives are taken at fixed guiding centre position R, parallel speed v‖ , and magnetic 
moment μ = ms v2⊥/2B . Here, E = ms v2/2 is kinetic energy, t is time, z is a coordinate that measures distance along the 
magnetic field, F is the mean distribution function (taken here to be a Maxwellian in E), 〈.〉R denotes a gyro-average at 
fixed R, vMs is the drift velocity due to the magnetic field gradient and curvature, given by

vMs = b̂

�s
×

(
v2⊥
2

∇B

B
+ v2‖κ

)
, (3)
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κ = b̂ · ∇b̂ is the curvature vector, and vE contains the lowest order, fluctuating E × B drift velocity, given by

vE = c

B
b̂ × ∇⊥ϕ. (4)

The system is closed by coupling to Poisson’s equation. In the usual gyrokinetic ordering – in which the Debye length is 
taken to be much smaller than the electron gyroradius – this reduces to quasineutrality:∑

s

Zsδns =
∑

s

Zs

∫
d3 v

(
gs + Zse

Ts
Fs

(〈ϕ〉R − ϕ
)) = 0. (5)

3. Coordinates and magnetic geometry

The coordinates used in stella are (x, y, z, v‖, μ), with v‖ = b̂ · v the speed along the magnetic field, μ = ms v2⊥/2B
the magnetic moment, z a coordinate measuring distance along the magnetic field, and (x, y) are coordinates in the plane 
perpendicular to b̂. The magnetic field vector B is expressed

B = ∇α × ∇ψ, (6)

where α labels field lines and ψ labels flux surfaces. The coordinates (x, y) are related to ψ and α via

x = dx

dψ
(ψ − ψ0) (7)

and

y = dy

dα
(α − α0) , (8)

with ψ0 and α0 the values of ψ and α at the centre of the simulation domain. Note that there is flexibility in defining x, y, 
and z within stella: details on the currently supported options are given in the subsection on magnetic geometry below.

3.1. Velocity space grids and integrals

In terms of our chosen (v‖, μ, σ) coordinates, with σ the gyration angle, velocity space integrals are of the form

∫
d3 v f =

2π∫
0

dσ

∞∫
−∞

dv‖
∞∫

0

dμ
B

m
f (9)

We truncate the v‖ integral at the cutoff values ±v‖,c , with v‖,c chosen to ensure that the integrand is sufficiently small 
for v‖ > v‖,c . The v‖ grid points are then chosen to be equally spaced on the interval [−v‖,c, v‖,c]. The number of parallel 
velocities Nv‖ is constrained in stella to be even so that v‖ = 0 is not included in the grid. This choice facilitates 
parallelization and avoids the need to apply a special treatment to phase space points where v‖ = b̂ · ∇B = 0, which 
decouple from all other points for a collisionless plasma. The v‖ integral is approximated numerically using an average of 
Simpson’s 3/8 rule and composite Simpson’s rule at the final four points at either end of the v‖ domain and pure composite 
Simpson’s rule at the interior points (cf. [24]).

The μ grid points are chosen according to Gauss–Laguerre quadrature (cf. [25]):

∞∫
0

dμ
B

m
f =

∞∫
0

d

(
μB0

T

)
T B

mB0
exp(−μB0/T ) f exp(μB0/T )

≈
Nμ∑
i=1

wi f (μ̂i)exp(μ̂i)
T B

mB0
,

(10)

with Nμ the number of μ grid points, μ̂ = μB0/T , and B0 is a free parameter. It is desirable to choose B0 to be independent 
of z, as otherwise the physical μ grid would be z-dependent and would complicate computation of z derivatives at fixed μ; 
i.e., (

∂

∂z

)
μ

=
(

∂

∂z

)
μ̂

+
(

∂μ̂

∂z

)
μ

(
∂

∂μ̂

)
z
=

(
∂

∂z

)
μ̂

+ μ

T

∂ B0

∂z

(
∂

∂μ̂

)
z
. (11)

To satisfy the boundary condition f (v⊥ → ∞) → 0, we must choose our maximum v⊥ at each z so that f evaluated 
there is approximately zero. Denoting v⊥,c as the smallest acceptable value satisfying f (v⊥,c) ≈ 0, we obtain the following 
constraint:



368 M. Barnes et al. / Journal of Computational Physics 391 (2019) 365–380
μ̂max ≥ v2⊥,c

v2
th,s

B0

Bmin
, (12)

where Bmin is fixed by the magnetic geometry, μ̂max is fixed by the choice of Nμ , and v⊥,c/vth,s is an input parameter. To 
ameliorate the CFL constraint on the time step size, we want to minimize the largest value of v⊥ , and thus μ̂max, included 
in the simulation. Combined with the above inequality, we find

B0 = Bmin
v2

th,s

v2⊥,c

μ̂max. (13)

3.2. Real space grids and boundary conditions

Periodic boundary conditions are enforced in x and y by expressing the guiding centre distribution g in terms of Fourier 
harmonics:

g(x, y, z, v‖,μ, t)
.=

∑
kx,ky

ĝk(z, v‖,μ, t)exp(ikxx + iky y), (14)

where ĝk = ĝkx,ky . This is justified as long as kx ∼ ky � 1/L. In this limit the turbulent fluctuations at separate ends of 
the (x, y) domain are decorrelated and can thus be treated as statistically periodic. This local, or flux tube, approximation 
is routinely used to model micro-instabilities and turbulence in axisymmetric magnetic field configurations and has been 
successfully validated across a range of experiments (cf. [26–31]). For non-axisymmetric field configurations, a single flux 
tube would in principle need to extend infinitely far along the magnetic field line as it ergodically samples a flux surface. 
A version of stella that simulates a flux annulus encompassing a full flux surface is currently in development to address 
this deficiency.

The grid in the parallel coordinate z is equally spaced, with the number of z points Nz forced to be odd in order to 
guarantee points at z = ±z0 and z = 0, with z0 the boundary value for z. The boundary condition in z is a generalization of 
the ‘twist and shift’ boundary condition [32] in which different kx values are coupled at the boundaries of the z-domain. For 
the sake of definiteness, we choose here z = ζ and α = θ − ιζ , with θ and ζ straight-field-line poloidal and toroidal angles, 
respectively, and ι = ι(ψ) the rotational transform. These choices for the z and α coordinates are used in stella only 
for stellarator simulations: The coordinates z = θ and α = ζ − qθ are used for all other magnetic field configurations, with 
q = q(ψ) the safety factor. For an arbitrary fluctuating quantity A, physical periodicity dictates A(x, y(θ, z), z) = A(x, y(θ, z +
2π p), z + 2π p), where p = M/Np with M any integer and Np defined so that the magnetic geometry is periodic in ζ with 
period 2π/Np . In terms of the spectral representation, this parallel boundary condition becomes∑

kx,ky

Âkx,ky (z)exp
(
iky y(θ, z) + ikxx

)

=
∑
kx,ky

Âkx,ky (z + 2π p)exp
(
iky y(θ, z) + i (kx − δk) x

)
exp

(
−2π piky

dy

dα
ι(ψ0)

)
,

(15)

with ψ0 the value of ψ on the flux surface of interest and δk = 2π pky(dy/dα)(dψ/dx)(dι/dψ)ψ0 . Orthogonality of the 
Fourier harmonics then implies that

Âkx,ky (z) = Âk′
x,ky

(z + 2π p)exp

(
−2π piky

dy

dα
ι(ψ0)

)
, (16)

with k′
x = kx + δk. An outgoing boundary condition is applied at the end of each set of connected 2π segments, with a zero 

incoming boundary condition on g .
For an axisymmetric confining field, the field period is 2π , making p an integer. The parallel boundary condition (16)

(with z → θ and ι → q) is then identical to the original ‘twist and shift’ boundary condition [32]. For a non-axisymmetric 
confining field, care must be taken when applying (16) to ensure that the turbulence is decorrelated at the ends of the 
domain in z – else the assumption of statistical periodicity in the (x, y) plane would be suspect. This should be achieved 
by choosing a sufficiently large value for M . Note that there are alternative and (likely) more efficient parallel boundary 
conditions that could be employed in the case of low magnetic shear stellarators [33]. These are not implemented in
stella at present, but will be the subject of further stella development.

3.3. Magnetic geometry

With these coordinate choices, there are eight independent geometrical quantities appearing in the gyrokinetic equa-
tion: B , b̂ · ∇z, |∇x|2, |∇ y|2, |∇x · ∇ y|, (b̂ × ∇B) · ∇ y, (b̂ × κ) · ∇x, and (b̂ × κ) · ∇ y. There are currently two options 
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Fig. 1. (Left): Poloidal cut of a flux surface corresponding to a typical Miller local equilibrium, with inverse aspect ratio R0/a = 3, normalized minor radius 
r/a = 0.5, elongation κ = 1.5 and triangularity δ = 0.2. (Right): Poloidal cuts of a flux surface from NCSX design LI383. The flux surface corresponds to an 
enclosed normalized toroidal flux of 0.635, and the cuts are taken at five equally spaced locations in ζ , starting at ζ = 0 (thick black line) and ending half 
a field period away at ζ = 1.047 (thin, light purple line). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

in stella for obtaining these quantities. The first option is to use a magnetic equilibrium generated by VMEC [34,35]. 
A module in stella takes the VMEC output and computes all of the geometrical quantities needed to solve the gy-
rokinetic equation on a user-selected flux surface and field line. For this option, the x and y coordinates are chosen so 
that dx/dψ = −(ψt/|ψt |)√ψLC F S/ψt/aBr and dy/dα = a

√
ψt/ψLC F S , with a the effective minor radius computed by VMEC, 

Br = 2|ψLC F S |/a2, ψ = −ψt , ψt the enclosed toroidal flux divided by 2π , and ψLC F S its value at the outermost flux surface 
computed by VMEC (conventionally called the ‘last closed flux surface’). As an illustrative example, we provide in Fig. 1
several poloidal cross sections of a single flux surface for NCSX design LI383. The equilibrium data was obtained from VMEC
and used to benchmark stella, as discussed in Sec. 6.3.

The second option, valid only for axisymmetric magnetic field configurations, is to specify a set of Miller parameters that 
are used to construct a local solution to the Grad–Shafranov equation [36]. In brief, the cylindrical coordinates (R, Z ) of the 
desired flux surface are assumed to be of the form

R(r,ϑ) = R0(r) + r cos(ϑ + sinϑ arcsin δ(r)), (17)

Z(r,ϑ) = κ(r)r sin(ϑ), (18)

where the flux label r is the half-diameter of the flux surface at the height of the magnetic axis, R0 is the average of the 
minimum and maximum values of the major radius at the height of the magnetic axis, and ϑ is a poloidal angle. Note 
that ϑ is not in general a straight-field-line angle. With this assumed form for the desired flux surface (and for neighboring 
surfaces), all of the required geometric quantities can be calculated by providing: the flux surface location r, the local major 
radius R0 and its derivative dR0/dr, the local elongation κ and its derivative dκ/dr, the local triangularity δ and its derivative 
dδ/dr, the local safety factor q and its derivative dq/dr, and the MHD α-parameter (4π ptot/B2

r )(d ln ptot/dr), where ptot is 
the species-summed plasma pressure. For this option, the x and y coordinates are chosen so that dx/dψ = q/rBr and 
dy/dα = (dψ/dr)/Br , with reference length a the half-diameter of the plasma volume at the height of the magnetic axis, 
Br is the user-specified reference magnetic field strength, and ψ is the enclosed poloidal flux divided by 2π . An illustrative 
example of the flux surface shape corresponding to this Miller local parameterization is given in Fig. 1.

4. Simulation equations

The gyrokinetic equation solved in stella is obtained by taking the discrete Fourier transform Fk of the gyrokinetic 
equation (2) in x and y and multiplying by the normalizing factor (a2/ρr vth,r) exp(−v2/v2

th,s)/Fs , with vth,r
.= √

2Tr/mr , 
ρr

.= vth,r/�r , and �r
.= eBr/mrc. The reference mass mr , density nr , and temperature Tr are user-specified, while the 

reference length a and magnetic field strength Br (different from B0) are determined by the choice of magnetic geometry 
model as detailed in Subsection 3.3. With this choice of normalization, the gyrokinetic equation solved by stella is

∂ g̃k,s

∂ t̃
+ vth,s

vth,r
ṽ‖b̂ · ∇̃z

(
∂ g̃k,s

∂z
+ Zs

T̃ s

∂ J0(ak,s)ϕ̃k

∂z
exp

(
−ṽ2

s

))
− vth,s

vth,r
μ̃sb̂ · ∇̃ B̃

∂ g̃k,s

∂ ṽ‖

+ iωd,k,s

(
g̃k,s + Zs

T̃ s
J0(ak,s)ϕ̃k exp

(
−ṽ2

s

))
+ iω∗,k,s J0(ak,s)ϕ̃k +Nk,s = 0,

(19)

where t̃
.= ta/vth,r , T̃ s

.= Ts/Tr , ṽ‖ = v‖/vth,s , ∇̃ .= a∇ , J0 is a Bessel function of the first kind, ak,s
.= k⊥v⊥/�s , k2⊥ =

k2
x |∇x|2 + k2

y |∇ y|2 + 2kxky∇x · ∇ y, μ̃s
.= μs Br/2Ts , B̃

.= B/Br ,
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g̃k,s
.= ĝk,s

Fs
exp

(
−ṽ2

s

) a

ρr
, (20)

ϕ̃k
.= eϕ̂k

Tr

a

ρr
, (21)

ω∗,k,s
.= kyρr

2
aBr

dy

dα
exp

(
−ṽ2

s

) d ln Fs

dψ
, (22)

Nk
.= Br

2

dy

dα

dx

dψ
Fk

[
F−1

k

[
ikyρr J0(ak,s)ϕ̃k

]
F−1

k

[
ikxρr g̃k,s

] −F−1
k

[
ikxρr J0(ak,s)ϕ̃k

]
F−1

k

[
ikyρr g̃k,s

]]
, (23)

and

ωd,k,s
.= T̃ s

Zs B̃

(
ṽ2‖vκ + μ̃sv∇B

)
· (kyρr∇ y + kxρr∇x

)
, (24)

with vκ = b̂ ×
(

b̂ · ∇̃b̂
)

and v∇B = b̂ × ∇̃ B̃ .

The normalized form of quasineutrality for Fourier component k is

∑
s

Zs
δnk,s

nr

a

ρr
=

∑
s

Zsñs

⎛
⎝ 2B̃

π1/2

∞∫
−∞

dṽ‖
∞∫

0

dμ̃s J0(ak,s)g̃k,s + Zs

T̃ s

(
�0(bk,s) − 1

)
ϕ̃k

⎞
⎠ = 0, (25)

with ñs
.= ns/nr , bk,s

.= k2⊥ρ2
s /2, �0(b) .= exp(−b)I0(b), and I0 is a modified Bessel function of the first kind.

5. Algorithm

When electron dynamics are retained in the gyrokinetic equation (19), the parallel streaming and acceleration terms are 
scaled up compared to all other terms by a factor of vth,e/vth,i ∼ 60. This places a significant restriction on the time step 
size for explicit time advance schemes. The severity of this restriction becomes prohibitive at long wavelengths [37,8], since 
the electrostatic potential obtained from quasineutrality (25) is derived from a polarization density that vanishes at infinite 
wavelength. In the absence of electromagnetic effects, this leads to a discretization-dependent CFL condition that scales as 
either 1/k⊥ or 1/k2⊥ , as we demonstrate numerically in the next section.

In light of these considerations, it is desirable to treat the parallel streaming and acceleration terms implicitly. We achieve 
this without undue computational expense by employing operator splitting to separate the faster time scales associated with 
streaming and acceleration from the rest of the dynamics. We start by splitting the gyrokinetic equation into three pieces:

∂ g̃k,s

∂t
=

(
∂ g̃k,s

∂t

)
1
+

(
∂ g̃k,s

∂t

)
2
+

(
∂ g̃k,s

∂t

)
3
, (26)

with (
∂ g̃k,s

∂t

)
1
+ iωd,k,s

(
g̃k,s + Zs

T̃ s
J0(ak,s)ϕ̃k exp

(
−ṽ2

s

))
+ iω∗,k,s J0(ak,s)ϕ̃k +Nk,s = 0, (27)(

∂ g̃k,s

∂t

)
2
− vth,s

vth,r
μ̃sb̂ · ∇̃ B̃

∂ g̃k,s

∂ ṽ‖
= 0, (28)(

∂ g̃k,s

∂t

)
3
+ vth,s

vth,r
ṽ‖b̂ · ∇̃z

(
∂ g̃k,s

∂z
+ Zs

T̃ s

∂ J0(ak,s)ϕ̃k

∂z
exp

(
−ṽ2

s

))
= 0. (29)

Symbolically we can write

∂g

∂t
= A[g] + (B + C)g (30)

with g a vector whose components are the values of g evaluated for the various species and phase space locations, B and 
C are matrices corresponding to the linear operators defined by Eqs. (28) and (29), respectively, and A is the nonlinear op-
erator defined by Eq. (27). There is no explicit mention of ϕ in Eq. (30), as ϕ itself can be expressed via quasineutrality (25)
as an operator acting on g. Discretizing in time and splitting the operators gives

gn = gn + �tA[g] (31)

gn = gn + �tBg (32)

gn+1 = gn + �tCg, (33)
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where n indicates the time index and �t = t̃n+1 − t̃n . We leave specification of the time discretization of the righthand sides 
of each of these equations to dedicated subsections below. The Lie splitting given above is accurate to first order in �t . 
Reversing the order of operations – operating first with C , then B and finally A – in the next time step makes the splitting 
accurate to second order in �t when A is also a linear operator (cf. [38]), albeit with the effective time step doubled in 
size. When the nonlinearity is included in A, only first order accuracy is guaranteed. This ‘flip-flop’ version of Lie splitting 
is what we employ in stella.

Note that higher order accuracy in time could be achieved, at the usual cost of more computation per time step, by 
employing an Additive Runge Kutta (ARK) scheme [39] instead of operator splitting. Indeed, such an approach has recently 
been applied to the full- f gyrokinetic equation and successfully used to treat turbulence in the edge of tokamaks [19]. The 
choice to use operator splitting in stella instead of an ARK variant is motivated primarily by its flexibility (ARK schemes 
do not allow for the separate implicit treatments detailed in Secs. 5.2 and 5.3) and simplicity, as well as by previous 
experience indicating that relatively low order accuracy in time is often sufficient for the accurate calculation of growth 
rates and turbulent fluxes. However, the inclusion of an ARK scheme in stella – possibly with the current operator 
splitting approach as a preconditioner – could potentially improve computational efficiency.

5.1. Explicit time advance for A

The evolution of g due to magnetic drifts, background gradient drive, and E × B nonlinear advection, described by 
Eqs. (27) and (31), is treated explicitly in stella. Although not the default option, users may choose to treat the rest 
of the terms in the gyrokinetic equation, i.e., parallel streaming and acceleration, explicitly as well. For the explicit time 
advance algorithm, the user can choose between standard fourth order Runge–Kutta (RK4) and second or third order strong 
stability preserving (SSP) Runge–Kutta (RK2 and RK3) schemes [40]. While the overall time advance algorithm is limited to 
second order accuracy in time, the option to treat the explicit terms with a higher order scheme is provided in order to 
improve their stability properties. The SSP schemes are constructed so that they retain the stability properties of the forward 
Euler method and have been optimized so that they allow for the least restrictive CFL condition possible. We provide details 
here for the default scheme in stella, which is SSP RK3. Applying SSP RK3 to Eq. (31) gives

gn = gn

3
+ �t

2
gn

1 + �t

6

(
gn

2 + gn
3

)
, (34)

with gn
1 = gn +A[gn], gn

2 = gn
1 +A[gn

1], and gn
3 =A[gn

2].
Our Fourier spectral treatment in x and y eliminates all differential operators in the linear part of A, making it al-

gebraic. The nonlinear E × B advection is treated pseudo-spectrally, with de-aliasing achieved by padding the final third 
of the Fourier coefficients with zeros [41]. The use of Fast Fourier Transforms makes each of the 1D transforms in x and 
y computationally efficient (O(N ln N) operations, with N the number of padded kx or ky coefficients retained). The ex-
plicit time advance is parallelized in stella so that each v‖ , μ and species can be solved independently, with the only 
communication occurring at the end of each fractional Runge–Kutta step when the potential ϕ must be updated.

5.2. Semi-Lagrange treatment of B

The parallel acceleration described by Eqs. (28) and (32) is simply advection in v‖ . The semi-Lagrange approach employed 
in stella exploits the fact that this advection has the analytical solution

g̃k,s(v‖,∗, μ̃s, t̃ + �t) = g̃k,s(ṽ‖ + �t(vth,s/vth,r)μ̃sb̂ · ∇̃ B̃, μ̃s, t̃). (35)

The quantity v‖,∗ = ṽ‖ + �t(vth,s/vth,r)μ̃sb̂ · ∇̃ B̃ , does not in general coincide with a grid location in ṽ‖ . We thus approx-
imate the value of g at v‖,∗ by interpolating the values from the four nearest-neighbor grid points, an approach that is 
accurate to fourth order in v‖ grid spacing, �v‖ . For v‖,∗ falling between grid points ṽ‖, j and ṽ‖, j+1, the interpolation 
formula is

g̃(v‖,∗) = 1

6

(
c jc j+1c j+2 g̃ j−1 − 3c j−1c j+1c j+2 g̃ j + 3c j−1c jc j+2 g̃ j+1 − c j−1c jc j+1 g̃ j+2

) +O(�v4‖), (36)

with c j
.= (ṽ‖, j − v‖,∗)/�v‖ . At the boundaries in ṽ‖ , simple linear interpolation is used. Note that all phase space indices 

aside from the one corresponding to v‖ have been suppressed for simplicity of notation. Combining this interpolation 
formula with the analytical solution (35) and applying it to the split equation (32) gives

g̃n
k,s, j = 1

6

(
c jc j+1c j+2 g̃n

k,s, j−1 − 3c j−1c j+1c j+2 g̃n
k,s, j + 3c j−1c jc j+2 g̃n

k,s, j+1 − c j−1c jc j+1 g̃n
k,s, j+2

)
. (37)

To facilitation this interpolation, a re-mapping is done so that g̃(ṽ‖) is available on all processors; information about g at 
all other phase space locations can be spread over multiple processors and solved for simultaneously.

Note that the semi-Lagrange approached detailed here places neither an accuracy nor a stability restriction on the time 
step size: the only error comes from interpolation in ṽ‖ , which can be carried out to high order with relatively little 
numerical expense.
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5.3. Implicit treatment of C

The dynamics of parallel streaming described by Eqs. (29) and (33) are treated implicitly in stella following a similar 
approach to that taken by the local, δ f gyrokinetic code GS2 [4]. We discretize Eq. (29) using variable centering in z and t . 
For z, we use a compact, two-point stencil to facilitate the use of tridiagonal matrix solution methods. Derivatives in z are 
given by(

∂ g̃

∂z

)
i∗

= g̃i+1 − g̃i

�z
, (38)

where the subscripts i and i + 1 denote evaluation at grid locations zi and zi+1, respectively, and �z
.= zi+1 − zi . In Eq. (38)

and for the remainder of this subsection we suppress all phase space indices except those corresponding to z and t to 
simplify notation. The subscript i∗ indicates evaluation at

zi∗
.= 1 ∓ uz

2
zi + 1 ± uz

2
zi+1, (39)

with the top (bottom) signs used when the parallel advection speed is positive (negative). This sign convention will be used 
for the remainder of this subsection. The user-specified parameter uz controls spatial centering: at the extremes, uz = 0
corresponds to a centered derivative that is accurate to second order in �z, and uz = 1 corresponds to a fully upwinded 
derivative that is accurate to first order in �z. All other z-dependent quantities are evaluated at zi∗ using the approximation

g̃i∗ = 1 ∓ uz

2
g̃i + 1 ± uz

2
g̃i+1, (40)

which is accurate to second order in �z.
The time discretization is treated in a manner analogous to the z discretization, with implicitness taking the place of 

upwinding. The time derivative is given by

(
∂ g̃

∂t

)n∗
= g̃n+1 − g̃n

�t
, (41)

with the superscript n∗ indicating evaluation at

tn∗
.= 1 − ut

2
tn + 1 + ut

2
tn+1. (42)

The user-specified parameter ut controls temporal centering: at the extremes, ut = 0 corresponds to a centered derivative 
that is accurate to second order in �t , and ut = 1 corresponds to a fully implicit treatment accurate to first order in �t . All 
other t-dependent quantities are evaluated at tn∗ using the approximation

g̃n∗ = 1 − ut

2
g̃n + 1 + ut

2
g̃n+1, (43)

which is accurate to second order in �t .
Applying the above z and t discretizations to Eq. (29) yields(

1 ± uz

2
g̃n+1

i+1 + 1 ∓ uz

2
g̃n+1

i

)
+ 1 + ut

2

�t

�z

vth,s

vth,r
ṽ‖

(
b̂ · ∇̃z

)
i∗

×
(

g̃n+1
i+1 − g̃n+1

i +
(

J0,i+1ϕ̃
n+1
i+1 − J0,iϕ̃

n+1
i

) Z

T̃
exp

(
−ṽ2

i∗
))

=
(

1 ± uz

2
g̃n

i+1 + 1 ∓ uz

2
g̃n

i

)
− 1 − ut

2

�t

�z

vth,s

vth,r
ṽ‖

(
b̂ · ∇̃z

)
i∗

×
(

g̃n
i+1 − g̃n

i +
(

J0,i+1ϕ̃
n
i+1 − J0,iϕ̃

n
i

) Z

T̃
exp

(
−ṽ2

i∗
))

(44)

In principle, solving Eq. (44) involves the solution of a linear system that is bidiagonal in the z-component of the matrix and 
is dense in (v‖, μ, s) due to the velocity space integral and species sum implicit in ϕ . The inversion of the dense matrix can 
be avoided by using a Green’s function approach [4], leaving only a computationally inexpensive bidiagonal matrix solve.

To formulate the Green’s function approach, we start by noting that Eq. (44) is linear in g̃n+1. We can thus express g̃n+1

as the linear combination g̃n+1 = g̃n+1 + g̃n+1, with
h inh
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(
1 ± uz

2
g̃n+1

inh,i+1 + 1 ∓ uz

2
g̃n+1

inh,i

)
+ 1 + ut

2

�t

�z

vth,s

vth,r
ṽ‖

(
b̂ · ∇̃z

)
i∗

(
g̃n+1

inh,i+1 − g̃n+1
inh,i

)

=
(

1 ± uz

2
g̃n

i+1 + 1 ∓ uz

2
g̃n

i

)
− 1 − ut

2

�t

�z

vth,s

vth,r
ṽ‖

(
b̂ · ∇̃z

)
i∗

×
(

g̃n
i+1 − g̃n

i +
(

J0,i+1ϕ̃
n
i+1 − J0,iϕ̃

n
i

) Z

T̃
exp

(
−ṽ2

i∗
))

(45)

and (
1 ± uz

2
g̃n+1

h,i+1 + 1 ∓ uz

2
g̃n+1

h,i

)
+ 1 + ut

2

�t

�z

vth,s

vth,r
ṽ‖

(
b̂ · ∇̃z

)
i∗

×
(

g̃n+1
h,i+1 − g̃n+1

h,i +
(

J0,i+1ϕ̃
n+1
i+1 − J0,iϕ̃

n+1
i

) Z

T̃
exp

(
−ṽ2

i∗
))

= 0.

(46)

The ‘twist-and-shift’ boundary condition described in Sec. 3.2 is applied at the end of each 2π segment in z. This boundary 
condition couples multiple 2π segments in z with different kx values, leading to an extended z domain with Nz+ points, 
where Nz+ = Nz × Nseg and Nseg is the number of connected segments.

From quasineutrality, we have

ϕ̃n+1
i =

(∑
s

(
1 − �0,i,s

) Z 2
s

T̃ s
ñs

)−1 ∑
s

Zsñs
2B̃

π1/2

∞∫
−∞

dṽ‖
∞∫

0

dμ̃s J0,i,s g̃n+1
i,s . (47)

We get the Green’s function for g̃n+1
h by supplying a unit impulse to ϕ̃ for each z location in the extended z domain and 

solving Eq. (46) for the response g̃n+1
h . Following this approach we have

g̃n+1
i =

Nz+∑
p=1

δ g̃h,i

δϕ̃p
ϕ̃n+1

p + g̃n+1
inh,i, (48)

where Nz+ is the number of grid points in the extended z domain, and δ g̃h,i/δϕ̃p is the response of g̃n+1
h at grid location zi

to a unit perturbation in ϕ̃n+1 at grid location zp . Substituting this form for g̃n+1
i into Eq. (47) yields an implicit equation 

for the vector ϕn+1 whose ith component is ϕ̃n+1
i :⎛

⎝I − Q
Nz+∑
p=1

δgn+1

δϕn+1

⎞
⎠ϕn+1 = ϕn+1

inh , (49)

where (δg/δϕ)ip = δ g̃h,i/δϕ̃p , I is the Nz+ × Nz+ identity matrix,

Q =
(∑

s

(1 − �0s)
Z 2

s e

Ts
ns

)−1 ∑
s

Zs

∫
d3 v J0,s (50)

is the velocity-space operator appearing in quasineutrality and (ϕ inh)i = Q g̃inh,i .
Thus stella first solves Eq. (45) for g̃n+1

inh and uses it in Eq. (49) to obtain ϕ̃n+1 via LU decomposition and back-
substitution. Finally, the updated distribution function g̃n+1 is calculated via Eq. (44). The layout of the data for this implicit 
solve is the same as for the explicit advance described in Subsection 5.1: information for each kx , ky , and z are available to 
all processors, while g evaluated at each v‖ , μ, and species can be solved for simultaneously.

5.3.1. Zonal modes
The ky = 0 modes, often referred to as zonal modes, must be treated specially, as they are periodic in z. To enforce 

periodicity, we solve the gyrokinetic equation twice each time it is required: once with a zero incoming boundary condition 
in z; and once with a unity incoming boundary condition in z, but with no terms involving g̃n or ϕ̃n . We denote the 
former solution as g̃ P I and the latter as g̃C F . Noting that any linear combination of g̃ P I and g̃C F is also a solution for g̃ and 
enforcing periodicity, we have

g̃n+1
1 = g̃ P I,1 + dg̃C F ,1 = d = g̃ P I,Nz + dg̃C F ,Nz . (51)

Solving for d and substituting into the above linear combination gives the solution for zonal modes:

g̃n+1
i = g̃ P I,i + g̃ P I,Nz

1 − g̃C F ,Nz

g̃C F ,i . (52)
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Table 1
List of stella input parameters for the CBC 
simulations

CBC input parameters

Input variable Input value

r̃ = r/a 0.5
R̃ = R0/a 2.77778
dR̃/dr̃ 0
q 1.4
ŝ = d ln q/d ln r 0.796
κ 1.0
dκ/dr̃ 0.0
δ 0.0
dδ/dr̃ 0.0
Br Bζ (R0)

ni/ne 1.0
Ti/Te 1.0
mi/me 3672
d lnni/dr̃ −0.8
d lnne/dr̃ −0.8
d ln Ti/dr̃ −2.49
d ln Te/dr̃ −2.49

Table 2
List of stella input parameters for the NCSX 
simulations

NCSX design LI383 input parameters

Input variable Input value

ψ̃ = ψt/ψt,LC F S 0.635
α 0
# of field periods 3
ni/ne 1.0
Ti/Te 1.0
mi/me 3672
d lnni/dx 0.0
d ln Ti/dx 4.0

6. Numerical tests

In this section we provide simulation data to illustrate the accuracy and efficiency of stella. Throughout, we verify the
stella simulations by comparing with the widely-benchmarked, δ f -gyrokinetic code GS2 [4,42]. We focus on two mag-
netic field configurations for our comparisons: the first is the so-called ‘Cyclone Base Case’ (CBC), a widely-used benchmark 
case [43] in the magnetic confinement fusion community that has an axisymmetric magnetic field with concentric circular 
flux surfaces; the second is design LI383 for the National Compact Stellarator Experiment (NCSX), a case which has also 
been used for benchmarking within the stellarator community [13].

All simulations for the CBC used the Miller local equilibrium [36] option to specify geometric coefficients, while the 
NCSX simulations used data from the VMEC-generated equilibrium for LI383. Tables 1 and 2 provide the relevant stella
input parameters for these cases.

6.1. Linear simulation results for the CBC

We start by comparing linear growth rates, frequencies, and mode structures obtained from stella and GS2 simula-
tions for the CBC. Unless stated otherwise, all linear CBC simulation results shown here were obtained with the following 
resolution: Both stella and GS2 used Nz = 25 and three 2π segments in an extended ballooning domain. Additionally, 
stella used Nv‖ = 48, Nμ = 12, and ṽ‖,c = ṽ⊥,c = 3, while GS2 used 33 pitch angles (20 in the untrapped region of phase 
space and 13 in the trapped region) and 16–32 energy grid points. The stella cell-centering parameters in z and t were 
set to uz = ut = 0.02. A description of the GS2 velocity space treatment can be found in Ref. [44].

First, we compare the two codes for the case of a modified Boltzmann response for the electrons; i.e., δne = ene(ϕ −
ϕ)/Te , with the overline denoting an average along the magnetic field. The results are given in Fig. 2. All quantities agree to 
within a few percent across the entire range of unstable ky values. We compare the same quantities with kinetic electrons 
at both ion and electron scales in Figs. 3 and 4. In both cases, there is again excellent agreement between the data from
stella and GS2.

As noted in Section 5, a guiding principle for the stella algorithm was the desirability of an implicit treatment 
for parallel streaming and acceleration when including kinetic electrons. To demonstrate the utility of the operator-split, 
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Fig. 2. (Left): Normalized real (squares) and imaginary (circles) components of mode frequency ω as a function of the normalized binormal wavenumber ky

for stella (filled blue/black) and GS2 (open red). (Right): Electrostatic potential for the fastest growing mode (kyρi = 0.6) as a function of the extended 
parallel coordinate z − z0 = θ − θ0 for GS2 (open red circles) and stella (filled black circles). These data correspond to CBC parameters with a modified 
Boltzmann response for electrons.

Fig. 3. (Left): Normalized real (squares) and imaginary (circles) components of mode frequency ω as a function of the normalized binormal wavenumber ky

for stella (filled blue/black) and GS2 (open red). (Right): Electrostatic potential for the fastest growing mode (kyρi = 0.6) as a function of the extended 
parallel coordinate z− z0 = θ −θ0 for GS2 (open red circles) and stella (filled black circles). These data correspond to CBC parameters with kinetic electrons.

Fig. 4. (Left): Normalized real (squares) and imaginary (circles) components of mode frequency ω as a function of the normalized binormal wavenumber ky

for stella (filled blue/black) and GS2 (open red). (Right): Electrostatic potential for the fastest growing mode at electron scales (kyρi = 40) as a function of 
the extended parallel coordinate z − z0 = θ − θ0 for GS2 (open red circles) and stella (filled black circles). These data correspond to CBC parameters with 
kinetic electrons.

implicit–explicit treatment detailed in Section 5, we determined the maximum stable time step for both the fully explicit 
and the implicit–explicit versions of stella. For convenience of notation, we will henceforth refer to the implicit–explicit 
method as the IMEX method. The results are shown in Fig. 5. As mentioned in Section 5, the fully explicit approach has a 
much more restrictive CFL condition than the IMEX approach: For kyρi ∼ 1, the maximum stable time step for the explicit 
scheme is ∼ 100 times smaller than for the IMEX scheme, and this gap widens at longer wavelengths.

The severe time step constraint for kyρi � 1 is due to the rapid response of the electric field to small charge imbalances 
at long wavelength. This response leads to a high frequency mode in the plasma known as the shear-Alfvén wave [37], 
which has a frequency proportional to 1/k⊥ . However, an even more restrictive constraint on the time step that scales as 
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Fig. 5. (Left): Maximum stable time step as a function of kyρi for the fully explicit scheme with upwind (red triangles) and centered (blue squares) differenc-
ing of ∂ϕ/∂z and for the mixed implicit–explicit (black circles) time advance schemes. Also shown are the expected scalings of the maximum stable time 
step with kyρi (see main text for an explanation of these scalings). These correspond to CBC parameters with kinetic electrons. (Right): Modulus of the 
error in the complex frequency ω as a function of time step size �t for the time advance scheme with Lie operator splitting (red squares) and with the 
‘flip-flop’ variant of Lie splitting (black circles). The reference complex frequency ω0 is obtained from a simulation with �tvth,i/a = 0.0015. All simulations 
used CBC parameters with a modified Boltzmann response for electrons.

1/k2⊥ appears if one does not use centered differences when discretizing the z derivative of ϕ [8]. A brief calculation deriving 
these time step constraints for the simplified case of an un-sheared, homogeneous plasma slab is given in Appendix A.

At short wavelengths, the explicit treatment of advection by magnetic drifts – with an advection speed proportional 
to the wavenumber – provides a CFL time step that scales as 1/ky . This is evident for kyρi � 0.4 in Fig. 5. The explicit 
treatment of the magnetic drifts is also responsible for the CFL time step at long wavelengths in the IMEX approach. 
A calculation similar to that given in Appendix A shows that the terms containing a product of the magnetic drifts and the 
electrostatic potential scale inversely with ky , leading to a CFL time step at long wavelengths that scales as ky . This scaling 
is evident for kyρi � 0.3 in Fig. 5.

Finally, to demonstrate the utility of the ‘flip-flop’ version of Lie operator spitting discussed in Sec. 5, we show in Fig. 5
the convergence of the computed complex frequency ω with decreasing time step �t for a case with Boltzmann electrons. 
Here, the numerical resolution used is Nv‖ = 64, Nμ = 6 and Nz = 9, with one 2π segment along z. Denoting ω0 as the 
value for ω at very small �t (a factor of 3 below those shown), we see that the error |ω − ω0| scales as (�t)2 for the 
‘flip-flop’ scheme and as approximately (�t)5/4 for regular Lie splitting.

6.2. Nonlinear simulation results for the CBC

We next compare turbulent heat fluxes from nonlinear simulations with CBC parameters for stella and GS2. Both
stella and GS2 simulations used Nz = 32, Nky = 22, and Nkx = 128, with a box size in x and y of approximately 126ρi . 
Note that the effective value for Nky should be doubled, as both stella and GS2 use the reality condition to limit the 
simulated k-domain so that ky ≥ 0. The velocity space resolution was the same for both codes as the linear case, with the 
exception that stella used Nμ = 16. A small amount of hyper-viscosity was employed in all simulations to avoid spectral 
pile-up and was treated implicitly using the same ‘flip-flop’ operator splitting employed for the parallel acceleration and 
streaming. The form for hyper-viscosity currently used in stella is

∂ g

∂t
= −D

k4⊥
k4⊥,max

g, (53)

with D = 0.05 for the simulations reported here.
The turbulent heat fluxes for simulations with kinetic electrons and with a modified Boltzmann response for electrons 

are given in Fig. 6. There is remarkable agreement between the stella and GS2 heat fluxes for ions in both cases and for 
electrons in the case where they are treated kinetically.

6.3. Linear simulation results for NCSX design LI383

For the NCSX linear benchmarks, a modified Boltzmann response was enforced for the electrons. The resolution required 
to achieve converged results at all kx and ky values was higher than for the CBC simulations in both stella and GS2. Both 
codes included all three NCSX field periods (corresponding to a ζ domain of [−15.653, 15.653]). The stella simulations 
used Nz = 1025, Nv‖ = 128, and Nμ = 24, while the GS2 simulations used Nz = 455, 24 energy grid points, and 50 (60) 
pitch-angles for the ky (kx) scan. These extreme resolutions were not necessary in most cases, but were used to ensure 
agreement in the most challenging ones.
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Fig. 6. Time traces of the gyro-Bohm-normalized heat flux (Q G B = ni Ti vth,iρ
2
i /a2) for stella (black line) and GS2 (red line). Simulations obtained using 

CBC parameters. (Left): Electrons have a modified Boltzmann response. (Right): Electrons are treated kinetically. Solid lines denote ion fluxes, and dashed 
line denote electron fluxes.

Fig. 7. (Left): Magnetic field strength vs ζ for the simulated NCSX equilibrium (LI383). (Right): Normalized modulus of ϕ vs z − z0 for (kxρi = 0.64,

kyρi = 1.414) obtained by stella (black line) and GS2 (red circles).

Fig. 8. Real frequency and growth rate spectra for scaled NCSX equilibrium LI383 for kyρi = 1.414 (left) and kxρi = 0 (right).

The variation in magnetic field strength with toroidal angle ζ is given in Fig. 7, along with an example of the mode 
structure along z for (kx = 0.636, ky = 1.414). One can see that there is a significant amount of structure, which is what 
necessitates the higher resolution in z. Plots of the linear growth rates and real frequencies for both kx and ky scans are 
given in Fig. 8.

7. Summary and future work

The algorithm for stella presented here enables fast, accurate evaluation of the gyrokinetic equation (2) subject to 
the quasineutrality constraint (5). Its use of a mixed implicit–explicit (IMEX) algorithm greatly reduces the CFL time step 
constraint, especially at long wavelengths. The implicit part of the solve is facilitated by operator splitting, which allows 
for a flexible treatment of the various different physics effects appearing in the gyrokinetic equation. The code has been 
benchmarked both linearly (Sec. 6.1) and nonlinearly (Sec. 6.2) – with and without retention of kinetic electron dynamics – 
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for axisymmetric magnetic field configurations. It has also been benchmarked linearly with a modified Boltzmann electron 
response in a non-axisymmetric magnetic field configuration (Sec. 6.3). As such, there are a wide range of problems to 
which it can be immediately and usefully applied.

However, there are a few obvious ways in which stella could be improved that are under development. The code does 
not currently include the effect of Coulomb collisions or of magnetic fluctuations, both of which should be straightforward 
extensions to stella. Also, as pointed out in Sec. 1, one of the motivations for developing stella was to study turbulence 
that is non-local in the bi-normal α coordinate. This can be achieved by abandoning the flux tube approach in favor of an 
annulus that encompasses the full flux surface of interest. Although this has not been done in the current version of
stella, the IMEX algorithm with operator splitting was devised with full flux surface simulations in mind. Implementation 
of this full flux surface option is in progress and will be addressed in detail in a future publication.
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Appendix A. Long wavelength numerical instability

Here we address the issue of numerical stability of the gyrokinetic-Poisson system of equations (19) and (25) at long 
wavelengths. It has been shown previously that a high frequency mode termed the electrostatic shear-Alfvén wave is sup-
ported by the plasma within the electrostatic approximation and that this leads to a CFL time step that scales as k‖/k⊥ [37]. 
It has also been noted that one must take care when discretizing the z derivative appearing in the gyrokinetic equation (19)
in order to avoid a numerical instability that scales inversely with k2⊥ [8]. Here we provide a brief calculation illustrating the 
origin of this numerical instability and reversion to the CFL constraint of the electrostatic Alfvén wave in the appropriate 
limit.

To simplify our analysis, we consider an un-sheared, homogeneous plasma slab. For such a system the perpendicular 
speed (or, equivalently, the magnetic moment) appears only as a parameter in the gyrokinetic equation and can thus be 
averaged away. The resulting system of equations is

∂Gk,s

∂t
+ v‖

(
∂Gk,s

∂z
+ Zsens

Ts
�0(bk,s)

∂ϕk

∂z

e−v2‖/v2
th,s√

π vth,s

)
= 0, (A.1)

∑
s

Zse

⎛
⎝ ∞∫

−∞
dv‖ Gk,s + Zsens

Ts

(
�0(bk,s) − 1

)
ϕk

⎞
⎠ = 0, (A.2)

with Gk,s(v‖, z, t) 
.= 2π

∫ ∞
0 dv⊥v⊥ J0(ak,s)gk,s . We discretize (A.1) and (A.2) using a simple, first-order upwind scheme for 

G and a more general scheme that combines upwind and centered differences for ϕ; i.e.,

∂G j

∂t
+ v‖

�z

(
σ

(
G j − G j−σ

) + Zen

T
�0(b)

(
ασ

(
ϕ j − ϕ j−σ

) + (1 − α)

2

(
ϕ j+1 − ϕ j−1

)) e−v2‖/v2
th√

π vth

)
= 0, (A.3)

where σ .= v‖/|v‖|, α ∈ [0, 1] controls the balance of upwind and centered differences in the evaluation of ∂ϕ/∂z, and the 
subscript j denotes evaluation at z j . Note that we have suppressed species and wavenumber subscripts to simplify notation.

Assuming solutions for G of the form G j = Ĝ(v‖) exp
(
ik‖z j − iωt

)
then leads to the dispersion relation

∑
s

Z 2
s ns

Ts

(
1 − �0(bk,s)

) =
∑

s

Z 2
s ns

Ts

�0(bk,s)√
π

∞∫
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du

(
αS1 + (1 − α)S2

ζs − uS1

)
ue−u2

, (A.4)

where u .= v‖/vth,s , ζs
.= ω/k‖vth,s , S1

.= sinc(k‖�z/2) exp(−iσk‖�z/2), and S2
.= sinc(k‖�z). Anticipating the existence of 

high frequency modes at long wavelength, we expand (A.4) for ζs � 1 and k⊥ρs � 1 to obtain
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Z 2
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2
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,

(A.5)
ω�z 2 2
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which has been truncated at second order in 1/ζs . From (A.5), we see that if there is any upwinding of ∂ϕ/∂z (i.e., α > 0), 
the term proportional to 1/ω2 can be neglected. The result is a spurious damped mode with maximum damping rate γ at 
the grid scale in z given by

γ ≈ − 4α√
π

vth,e

�z

(∑
s

Z 2
s

ns

ne

Te

Ts
k2⊥ρ2

s

)−1

. (A.6)

If ∂ϕ/∂z is discretized with centered differences (i.e., α = 0), one must retain the term proportional to 1/ω2. In this case, 
one recovers a discretized form of the electrostatic Alfvén wave:

ω2 ≈ sin2(k‖�z)
v2

th,e

�z2

(∑
s

Z 2
s

ns

ne

Te

Ts
k2⊥ρ2

s

)−1

. (A.7)

The requirement that these frequencies be resolved by an explicit time advance method leads to a severe constraint on the 
allowed time step size.
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