Your search
Results 59 resources
-
Abstract We use beam tracing—implemented with a newly-written code, Scotty—and the reciprocity theorem to derive a model for the linear backscattered power of the Doppler backscattering (DBS) diagnostic. Our model works for both the O-mode and X-mode in tokamak geometry (and certain regimes of stellarators). We present the analytical derivation of our model and its implications for...
-
Toroidal Alfvén eigenmodes (TAEs) can transport fusion-born energetic particles out of the plasma volume, thereby decreasing plasma self-heating efficiency and possibly damaging reactor walls. Therefore, understanding TAE destabilization and identifying saturation mechanisms are crucial to achieving burning plasma. Here, a fully gyrokinetic study is employed. In the case studied, the primary...
-
The work reported in this paper addresses two aspects. In the first part, numerical simulations are conducted to examine the impact of magnetic equilibrium shaping (elongation and triangularity), on both conventional Ion Temperature Gradient (ITG) modes and Short Wavelength ITG modes. This analysis is performed considering the experimental profiles and parameters of the ADITYA-U tokamak,...
-
Two image-based velocity-inference techniques, cross-correlation time-delay estimation (CCTDE) and dynamic time warping (DTW), were tested. These techniques are conventionally used in the study of plasma dynamics, but they can be applied to any data where features propagate across the image field-of-view. Differences between the techniques were investigated, which showed that the shortcomings...
-
High-power-density tokamaks offer a potential solution to design cost-effective fusion devices. One way to achieve high power density is to operate at a high ββ\beta value (the ratio of thermal to magnetic pressure), i.e. β∼1β∼1\beta \sim 1. However, a β∼1β∼1\beta \sim 1 state may be unstable to various pressure- and current-driven instabilities or have unfavourable microstability properties....
-
The steep plasma pressure gradient that forms at the edge of the high confinement, H-mode regime of tokamak operation provides free energy to drive electromagnetic micro-instabilities that are widely believed to influence the transport processes in this so-called pedestal region. This high pressure gradient also provides a high current density (bootstrap current), known to influence ballooning...
-
We implement the higher order gyrokinetic theory developed in Dudkovskaia et al (2023 Plasma Phys. Control. Fusion 65 045010), reduced to the limit of , where B 0 is the tokamak equilibrium magnetic field, and B ϑ is its poloidal component, in the local gyrokinetic turbulence code, GS2. The principal motivation for this extension is to quantify the importance of neoclassical flows in...
-
This paper discusses the importance of parallel perturbations of the magnetic-field in gyrokinetic simulations of electromagnetic instabilities and turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak STEP. Previous studies have revealed the presence of unstable hybrid kinetic ballooning modes (hKBMs) and subdominant...
-
In this work, we present first-of-their-kind nonlinear local gyrokinetic (GK) simulations of electromagnetic turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production (STEP). A prior linear analysis in Kennedy et al (2023 Nucl. Fusion 63 126061) reveals the presence of unstable hybrid kinetic...
-
We present herein the results of a linear gyrokinetic analysis of electromagnetic microinstabilites in the conceptual high reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production, https://step.ukaea.uk. We examine a range of flux surfaces between the deep core and the pedestal top for two candidate flat-top operating points of the prototype device. Local linear...
-
First nonlinear gyrokinetic simulations of microtearing modes in the core of a MAST case are performed on two surfaces of the high-collisionality discharge used in Valovič et al (2011 Nucl. Fusion 51 073045) to obtain the favorable energy confinement scaling with collisionality, . On the considered surfaces microtearing modes dominate linearly at binormal length scales of the order of the ion...
-
The analytical theory describing the resonant excitation and coupling of volume and surface fields on the surface of two-dimensional complex electrodynamic structures is presented. The theoretical analysis is valid over a broad frequency spectrum from mm-wave frequencies through THz and even optical frequencies. An experimental study of planar periodic structures has been carried out using a...
-
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand the confinement properties that might be expected in the conceptual design for a high β ST fusion reactor, a 1 GW ST plasma equilibrium was analysed using local linear gyrokinetics to determine the type of...
-
High-power microwave sources are typically relativistic in nature, employing multi-kilo-ampere electron beams that require significant magnetic confinement for efficient operation. As the desired output power increases, so does the complexity, and overall energy requirements, of the source. It can, therefore, be advantageous to consider the use of several, moderate-power, sources operating as...
-
The formation of density corrugation due to zonal flow, so-called zonal staircase, is investigated theoretically, based on the wave-kinetic framework. The wave-kinetic simulation is performed, considering the profile corrugation and the turbulence trapping mechanism, where the profile corrugation changes the growth rate and the dispersion relation of turbulence. The zonal density is generated...
Explore
Topic
- Plasma Turbulence & Transport (19)
- Plasma Heating & Waves (17)
- Plasma Instabilities & MHD (13)
- Gyrokinetics & Plasma Simulations (13)
- Magnetic Confinement & Tokamaks (13)
- Electromagnetic Instabilities (9)
- Plasma Diagnostics & Simulations (7)
- Space & Astrophysical Plasmas (4)
- Plasma Confinement & Stability (3)
- Edge Plasma & Divertors (3)
- 3D Magnetic Fields & Perturbations (2)
- Laser-Plasma Interactions & Experiments (2)
Outputs
- Code (1)
- Publications (57)
Related work
Tools used by TDoTP
- Code (1)
Resource type
Publication year
Resource language
- English (39)