Your search
Results 26 resources
-
The cold ion limit of the local gyrokinetic model is rigorously taken to produce a nonlinear system of fluid equations that includes background flow shear. No fluid closure is required. By considering a simple slab geometry with magnetic drifts, but no magnetic shear, these fluid equations reduce to the Charney–Hasegawa–Mima model in the presence of flow shear. Analytic solutions to this model...
-
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent...
-
Analytical, numerical, and experimental studies of volume and surface-field coupling in planar metal periodic surface lattice (PSL) structures superimposed on dielectric substrates with a metallic backing (PSLDM) are presented. We show the formation of frequency-locked PSLDM-coupled eigenmodes and unlocked surface-field resonances (PSL without substrate). These experimental observations are in...
-
Spatially non-local aspects of turbulent transport in tokamak plasmas are examined with global gyrokinetic simulations using the ORB5 code. Inspired by very accurate measurements in the TCV tokamak in L-mode, we initialise plasma profiles with constant logarithmic gradients in the core and constant linear gradients in the ‘pedestal’ (). The main finding is that transport in the core is...
-
A numerical simulation is presented concerning an L/O mode electromagnetic wave propagating normally into an overdense magnetised plasma with a smooth density gradient leading to excitation of Langmuir turbulence in the vicinity of the reflection point. The simulation parameters are chosen to represent an ionospheric radio frequency heating experiment but may have relevance to other...
-
We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless,...
-
Some of the main plasma physics challenges associated with achieving the conditions for commercial fusion power in tokamaks are reviewed. The confinement quality is considered to be a key factor, having an impact on the size of the reactor and exhaust power that has to be managed. Plasma eruptions can cause excessive erosion if not mitigated, with implications for maintenance and availability....
-
Microwave undulators have great potential to be used in short-wavelength free-electron lasers. In this paper, the properties of a corrugated waveguide and its performance as an undulator cavity for a UK X-ray free-electron laser were systematically studied. The equations presented in this paper allow a fast estimation of the dimensions of the corrugated waveguide. An undulator cavity operating...
-
Differential rotation is induced in tokamak plasmas when an underlying symmetry of the governing gyrokinetic-Maxwell system of equations is broken. One such symmetry-breaking mechanism is considered here: the turbulent acceleration of particles along the mean magnetic field. This effect, often referred to as the ‘parallel nonlinearity’, has been implemented in the δf gyrokinetic code stella...
-
Linear accelerators operating at millimeter or sub-terahertz frequencies and short pulse duration have the advantages of lower power consumption and high repetition rate. In this paper planar metallic accelerating structures with different modes operating at 210 GHz were designed. A tolerance study was also carried out to determine the sensitivities of the geometric parameters to the wakefield...
-
A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius are considered, expanding the ion response solution in terms of , where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, . With effects of...
Explore
Topic
- Plasma Turbulence & Transport (11)
- Plasma Instabilities & MHD (8)
- Magnetic Confinement & Tokamaks (7)
- Plasma Heating & Waves (6)
- Plasma Diagnostics & Simulations (4)
- 3D Magnetic Fields & Perturbations (3)
- Laser-Plasma Interactions & Experiments (3)
- Gyrokinetics & Plasma Simulations (3)
- Edge Plasma & Divertors (2)
- Electromagnetic Instabilities (2)
- Space & Astrophysical Plasmas (2)
- Plasma Confinement & Stability (2)
Outputs
- Code (2)
- Publications (23)
Related work
Resource type
Publication year
Resource language
- English (20)