Your search
Results 24 resources
-
Multiple space and time scales arise in plasma turbulence in magnetic confinement fusion devices because of the smallness of the square root of the electron-to-ion mass ratio and the consequent disparity of the ion and electron thermal gyroradii and thermal speeds. Direct simulations of this turbulence that include both ion and electron space–time scales indicate that there can be significant...
-
It is shown that in low-beta, weakly collisional plasmas, such as the solar corona, some instances of the solar wind, the aurora, inner regions of accretion discs, their coronae and some laboratory plasmas, Alfvénic fluctuations produce no ion heating within the gyrokinetic approximation, i.e. as long as their amplitudes (at the Larmor scale) are small and their frequencies stay below the...
-
A numerical simulation is presented concerning an L/O mode electromagnetic wave propagating normally into an overdense magnetised plasma with a smooth density gradient leading to excitation of Langmuir turbulence in the vicinity of the reflection point. The simulation parameters are chosen to represent an ionospheric radio frequency heating experiment but may have relevance to other...
-
The tokamak is the most advanced approach to fusion and is approaching operation under power-plant conditions, promising sustainable, low-emission, baseload power to the grid. As the heating power of a tokamak is increased above a threshold, the plasma suddenly bifurcates to a state of high confinement, creating a region of plasma with a large pressure gradient at its edge. This bifurcation...
-
Linear accelerators operating at millimeter or sub-terahertz frequencies and short pulse duration have the advantages of lower power consumption and high repetition rate. In this paper planar metallic accelerating structures with different modes operating at 210 GHz were designed. A tolerance study was also carried out to determine the sensitivities of the geometric parameters to the wakefield...
-
We consider the long-standing like-charge attraction problem, wherein under certain conditions, similarly charged spheres suspended in aqueous electrolyte have been observed to display a minimum in their interaction potential, contrary to the intuitively expected monotonically varying repulsion. Recently, we described an interfacial mechanism invoking the molecular nature of the solvent that...
-
In this article, a transmission line system for the propagation of millimeter-wave radiation is presented. The full system includes a TE11-to-TE01 mode converter, waveguide tapers, miter bends, and many straight sections. The design of each of these components is described, and the optimized simulation results are given. The mode converter shows a greater than 96% mode conversion efficiency...
-
Nonlinear simulations are carried out for the microtearing mode using particle-based δf gyrokinetic simulations for parameters relevant to spherical tokamaks. The present study finds that the microtearing mode can generate significant electron heat flux, which is predominantly carried out by the electromagnetic component of the heat flux with a negligible contribution from the electrostatic...
-
A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius are considered, expanding the ion response solution in terms of , where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, . With effects of...
Explore
Topic
Outputs
- Publications (24)
Resource type
- Conference Paper (1)
- Journal Article (23)
Publication year
-
Between 2000 and 2025
(24)
-
Between 2010 and 2019
(6)
- 2019 (6)
- Between 2020 and 2025 (18)
-
Between 2010 and 2019
(6)
Resource language
- English (16)