Your search
Results 88 resources
-
We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect ‘magneto-immutability’ by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless,...
-
Some of the main plasma physics challenges associated with achieving the conditions for commercial fusion power in tokamaks are reviewed. The confinement quality is considered to be a key factor, having an impact on the size of the reactor and exhaust power that has to be managed. Plasma eruptions can cause excessive erosion if not mitigated, with implications for maintenance and availability....
-
The tokamak is the most advanced approach to fusion and is approaching operation under power-plant conditions, promising sustainable, low-emission, baseload power to the grid. As the heating power of a tokamak is increased above a threshold, the plasma suddenly bifurcates to a state of high confinement, creating a region of plasma with a large pressure gradient at its edge. This bifurcation...
-
Microwave undulators have great potential to be used in short-wavelength free-electron lasers. In this paper, the properties of a corrugated waveguide and its performance as an undulator cavity for a UK X-ray free-electron laser were systematically studied. The equations presented in this paper allow a fast estimation of the dimensions of the corrugated waveguide. An undulator cavity operating...
-
Differential rotation is induced in tokamak plasmas when an underlying symmetry of the governing gyrokinetic-Maxwell system of equations is broken. One such symmetry-breaking mechanism is considered here: the turbulent acceleration of particles along the mean magnetic field. This effect, often referred to as the ‘parallel nonlinearity’, has been implemented in the δf gyrokinetic code stella...
-
Linear accelerators operating at millimeter or sub-terahertz frequencies and short pulse duration have the advantages of lower power consumption and high repetition rate. In this paper planar metallic accelerating structures with different modes operating at 210 GHz were designed. A tolerance study was also carried out to determine the sensitivities of the geometric parameters to the wakefield...
-
In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer’s theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict...
-
We consider the long-standing like-charge attraction problem, wherein under certain conditions, similarly charged spheres suspended in aqueous electrolyte have been observed to display a minimum in their interaction potential, contrary to the intuitively expected monotonically varying repulsion. Recently, we described an interfacial mechanism invoking the molecular nature of the solvent that...
-
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ion temperature gradient (ITG), trapped electron mode...
-
In this article, a transmission line system for the propagation of millimeter-wave radiation is presented. The full system includes a TE11-to-TE01 mode converter, waveguide tapers, miter bends, and many straight sections. The design of each of these components is described, and the optimized simulation results are given. The mode converter shows a greater than 96% mode conversion efficiency...
-
Nonlinear simulations are carried out for the microtearing mode using particle-based δf gyrokinetic simulations for parameters relevant to spherical tokamaks. The present study finds that the microtearing mode can generate significant electron heat flux, which is predominantly carried out by the electromagnetic component of the heat flux with a negligible contribution from the electrostatic...
-
Exhaust power components due to ELMs, radiation and heat transport across the edge transport barrier (ETB) between ELMs are quantifed for H-mode plasmas in JET-C and JET-ILW for comparison with simulations of pedestal heat transport. In low-current, JET-ILW pulses with a low rate of gas fuelling, the pedestal heat transport is found not to be stiff, i.e. the effective, mean heat diffusivity...
-
A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius are considered, expanding the ion response solution in terms of , where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, . With effects of...
Explore
Topic
- Plasma Turbulence & Transport (32)
- Plasma Heating & Waves (24)
- Magnetic Confinement & Tokamaks (23)
- Plasma Instabilities & MHD (23)
- Gyrokinetics & Plasma Simulations (17)
- Plasma Diagnostics & Simulations (12)
- Electromagnetic Instabilities (11)
- Space & Astrophysical Plasmas (7)
- 3D Magnetic Fields & Perturbations (5)
- Laser-Plasma Interactions & Experiments (5)
- Plasma Confinement & Stability (5)
- Edge Plasma & Divertors (5)
Outputs
- Publications
- Code (1)
Tools used by TDoTP
- Code (1)
Resource type
- Conference Paper (3)
- Journal Article (81)
- Preprint (2)
- Thesis (1)
- Web Page (1)
Publication year
-
Between 2000 and 2025
(85)
- Between 2010 and 2019 (23)
- Between 2020 and 2025 (62)
- Unknown (3)
Resource language
- English (61)