Your search
Results 11 resources
-
Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Due to the small electron-to-ion mass ratio and the large electron transit frequency, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes. However, in gyrokinetic simulations of ion-gyroradius-scale modes in axisymmetric toroidal...
-
A new quasilinear saturation model SAT3 has been developed for the purpose of calculating radial turbulent fluxes in the core of tokamak plasmas. The new model is shown to be able to better recreate the isotope mass dependence of nonlinear gyrokinetic fluxes compared to contemporary quasilinear models, including SAT2 (Staebler et al 2021 Nucl. Fusion 61 116007), while performing at least as...
-
To be economically competitive, spherical tokamak (ST) power plant designs require a high beta (plasma pressure/magnetic pressure) and sufficiently low turbulent transport to enable steady-state operation. A novel approach to tokamak optimisation is for the plasma to have negative triangularity, with experimental results indicating this reduces transport. However, negative triangularity is...
-
The steep plasma pressure gradient that forms at the edge of the high confinement, H-mode regime of tokamak operation provides free energy to drive electromagnetic micro-instabilities that are widely believed to influence the transport processes in this so-called pedestal region. This high pressure gradient also provides a high current density (bootstrap current), known to influence ballooning...
-
The analytical theory describing the resonant excitation and coupling of volume and surface fields on the surface of two-dimensional complex electrodynamic structures is presented. The theoretical analysis is valid over a broad frequency spectrum from mm-wave frequencies through THz and even optical frequencies. An experimental study of planar periodic structures has been carried out using a...
-
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand the confinement properties that might be expected in the conceptual design for a high β ST fusion reactor, a 1 GW ST plasma equilibrium was analysed using local linear gyrokinetics to determine the type of...
-
Stimulated Brillouin scattering experiments in the ionospheric plasma using a single electromagnetic pump wave have previously been observed to generate an electromagnetic sideband wave, emitted by the plasma, together with an ion- acoustic wave. Here we report results of a controlled, pump and probe beat-wave driven Brillouin scattering experiment, in which an ion-acoustic wave generated by...
-
The performance of spherical tokamak reactors depends on plasma β, and an upper limit is set by long-wavelength kinetic ballooning modes (KBMs). We examine how these modes become unstable in spherical-tokamak reactor relevant plasmas, which may contain significant fast-ion pressure. In a series of numerically generated equilibria of increasing β, the KBM becomes unstable at sufficiently high...
-
A new algorithm for toroidal flow shear in a linearly implicit, local δfδf\delta f gyrokinetic code is described. Unlike the current approach followed by a number of codes, it treats flow shear continuously in time. In the linear gyrokinetic equation, time-dependences arising from the presence of flow shear are decomposed in such a way that they can be treated explicitly in time with no...
-
We perform a study of system-scale to gyro-radius scale electromagnetic modes in a pedestal-like equilibrium using a gyrokinetic code ORB5, along with a comparison to the results of wimulations in a local gyrokinetic code, GS2, and an MHD energy principle code, MISHKA. In the relevant large-system, short wavelength regime, good agreement between the gyrokinetic codes is found. For global-scale...
-
The tokamak is the most advanced approach to fusion and is approaching operation under power-plant conditions, promising sustainable, low-emission, baseload power to the grid. As the heating power of a tokamak is increased above a threshold, the plasma suddenly bifurcates to a state of high confinement, creating a region of plasma with a large pressure gradient at its edge. This bifurcation...
Explore
Topic
Outputs
- Publications (11)
Resource type
- Journal Article (11)