Your search
Results 70 resources
-
The saturated state of turbulence driven by the ion-temperature-gradient instability is investigated using a two-dimensional long-wavelength fluid model that describes the perturbed electrostatic potential and perturbed ion temperature in a magnetic field with constant curvature (a ZZZ-pinch) and an equilibrium temperature gradient. Numerical simulations reveal a well-defined transition...
-
Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results...
-
Microtearing modes have been widely reported as a tearing parity electron temperature gradient driven plasma instability, which leads to fine scale tearing of the magnetic flux surfaces thereby resulting in reconnection of magnetic field lines and formation of magnetic islands. In slab geometry it has previously been shown that the drive mechanism requires a finite collision frequency....
-
We perform a study of system-scale to gyro-radius scale electromagnetic modes in a pedestal-like equilibrium using a gyrokinetic code ORB5, along with a comparison to the results of wimulations in a local gyrokinetic code, GS2, and an MHD energy principle code, MISHKA. In the relevant large-system, short wavelength regime, good agreement between the gyrokinetic codes is found. For global-scale...
-
We discuss theoretical and numerical aspects of gyrokinetics as a Lagrangian field theory when the field perturbation is introduced into the symplectic part. A consequence is that the field equations and particle equations of motion in general depend on the time derivatives of the field. The most well-known example is when the parallel vector potential is introduced as a perturbation, where a...
-
Two synthetic diagnostics are implemented for the high-k scattering system in NSTX (Smith et al 2008 Rev. Sci. Instrum. 79 123501) allowing direct comparisons between the synthetic and experimentally detected frequency and wavenumber spectra of electron-scale turbulence fluctuations. Synthetic diagnostics are formulated in real-space and in wavenumber space, and are deployed in realistic...
-
The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to...
-
We present a new theoretical approach, based on the Hamiltonian formalism, to investigate the stability of islands in phase space, generated by trapping of energetic particles (EPs) in plasma waves in a tokamak. This approach is relevant to MHD modes driven by EPs (EP-MHD) such as toroidal Alfvén eigenmodes (TAEs), EP-driven geodesic acoustic modes (EGAMs) or fishbones. A generic problem of a...
-
The ‘Super H-Mode’ regime is predicted to enable pedestal height and fusion performance substantially higher than standard H-Mode operation. This regime exists due to a bifurcation of the pedestal pressure, as a function of density, that is predicted by the EPED model to occur in strongly shaped plasmas above a critical pedestal density. Experiments on Alcator C-Mod and DIII-D have achieved...
-
Multiple space and time scales arise in plasma turbulence in magnetic confinement fusion devices because of the smallness of the square root of the electron-to-ion mass ratio and the consequent disparity of the ion and electron thermal gyroradii and thermal speeds. Direct simulations of this turbulence that include both ion and electron space–time scales indicate that there can be significant...
-
It is shown that in low-beta, weakly collisional plasmas, such as the solar corona, some instances of the solar wind, the aurora, inner regions of accretion discs, their coronae and some laboratory plasmas, Alfvénic fluctuations produce no ion heating within the gyrokinetic approximation, i.e. as long as their amplitudes (at the Larmor scale) are small and their frequencies stay below the...
-
The strong, sharp flow structures that are seen frequently in tokamak cores, and large amplitude spontaneous global toroidal rotation are both surprising in light of current theories where toroidal flow evolution is dominantly diffusive. Mechanisms for spontaneously generating strong poloidal shear flows have been extensively investigated, but these processes were thought not to apply to...
-
Planar periodic surface lattice (PSL) structures based on thin, subwavelength substrates have been studied experimentally and numerically. Coupled eigenmode resonances composed of partial volume and surface modes are observed for PSLs with lattice periodicities of 1.50 mm and 1.62 mm etched onto thin copper-backed, substrates. We show that the copper backing is essential for mode-selection in...
-
The cold ion limit of the local gyrokinetic model is rigorously taken to produce a nonlinear system of fluid equations that includes background flow shear. No fluid closure is required. By considering a simple slab geometry with magnetic drifts, but no magnetic shear, these fluid equations reduce to the Charney–Hasegawa–Mima model in the presence of flow shear. Analytic solutions to this model...
-
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent...
Explore
Topic
- Plasma Turbulence & Transport (21)
- Plasma Heating & Waves (16)
- Magnetic Confinement & Tokamaks (16)
- Plasma Instabilities & MHD (15)
- Gyrokinetics & Plasma Simulations (15)
- Plasma Diagnostics & Simulations (7)
- Electromagnetic Instabilities (7)
- Space & Astrophysical Plasmas (6)
- 3D Magnetic Fields & Perturbations (4)
- Laser-Plasma Interactions & Experiments (4)
- Plasma Confinement & Stability (3)
- Edge Plasma & Divertors (2)
Outputs
- Code (3)
-
Conferences
(5)
-
EU-US Task Force
(1)
- 25th (1)
-
European Fusion Theory
(4)
-
19th
(4)
- Invited Talks (1)
- Oral Presentations (2)
-
19th
(4)
- Sherwood Fusion Theory (1)
-
Theory of Fusion Plasmas Joint Varenna-Lausanne International
(1)
- Invited Talks (1)
-
EU-US Task Force
(1)
- Data (2)
- Publications (59)
Related work
Resource type
- Conference Paper (4)
- Dataset (2)
- Journal Article (59)
- Presentation (2)
- Thesis (1)
- Web Page (2)