Your search
Results 21 resources
-
Spatially non-local aspects of turbulent transport in tokamak plasmas are examined with global gyrokinetic simulations using the ORB5 code. Inspired by very accurate measurements in the TCV tokamak in L-mode, we initialise plasma profiles with constant logarithmic gradients in the core and constant linear gradients in the ‘pedestal’ (). The main finding is that transport in the core is...
-
The tokamak is the most advanced approach to fusion and is approaching operation under power-plant conditions, promising sustainable, low-emission, baseload power to the grid. As the heating power of a tokamak is increased above a threshold, the plasma suddenly bifurcates to a state of high confinement, creating a region of plasma with a large pressure gradient at its edge. This bifurcation...
-
Microwave undulators have great potential to be used in short-wavelength free-electron lasers. In this paper, the properties of a corrugated waveguide and its performance as an undulator cavity for a UK X-ray free-electron laser were systematically studied. The equations presented in this paper allow a fast estimation of the dimensions of the corrugated waveguide. An undulator cavity operating...
-
A study of turbulent impurity transport by means of quasilinear and nonlinear gyrokinetic simulations is presented for Wendelstein 7-X (W7-X). The calculations have been carried out with the recently developed gyrokinetic code stella. Different impurity species are considered in the presence of various types of background instabilities: ion temperature gradient (ITG), trapped electron mode...
-
Exhaust power components due to ELMs, radiation and heat transport across the edge transport barrier (ETB) between ELMs are quantifed for H-mode plasmas in JET-C and JET-ILW for comparison with simulations of pedestal heat transport. In low-current, JET-ILW pulses with a low rate of gas fuelling, the pedestal heat transport is found not to be stiff, i.e. the effective, mean heat diffusivity...
-
A new drift kinetic theory for the response of ions to small magnetic islands in toroidal plasma is presented. Islands whose width w is comparable to the ion poloidal Larmor radius are considered, expanding the ion response solution in terms of , where r is the minor radius. In this limit, the ion distribution can be represented as a function of toroidal canonical momentum, . With effects of...
Explore
Topic
- Plasma Turbulence & Transport
- Plasma Heating & Waves (8)
- Magnetic Confinement & Tokamaks (5)
- Electromagnetic Instabilities (5)
- Space & Astrophysical Plasmas (5)
- 3D Magnetic Fields & Perturbations (4)
- Laser-Plasma Interactions & Experiments (4)
- Plasma Instabilities & MHD (3)
- Plasma Diagnostics & Simulations (2)
Outputs
- Publications (21)
Resource type
- Journal Article (21)
Publication year
-
Between 2000 and 2025
(21)
-
Between 2010 and 2019
(9)
- 2019 (9)
- Between 2020 and 2025 (12)
-
Between 2010 and 2019
(9)