Your search
Results 7 resources
-
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand the confinement properties that might be expected in the conceptual design for a high β ST fusion reactor, a 1 GW ST plasma equilibrium was analysed using local linear gyrokinetics to determine the type of...
-
We implement the higher order gyrokinetic theory developed in Dudkovskaia et al (2023 Plasma Phys. Control. Fusion 65 045010), reduced to the limit of , where B 0 is the tokamak equilibrium magnetic field, and B ϑ is its poloidal component, in the local gyrokinetic turbulence code, GS2. The principal motivation for this extension is to quantify the importance of neoclassical flows in...
-
The poloidal harmonics of the toroidal normal modes of an unstable axisymmetric tokamak plasma are employed as basis functions for the minimisation of the 3D energy functional. This approach presents a natural extension of the perturbative method considered in Anastopoulos Tzaniset al(2019Nucl. Fusion59126028). This variational formulation is applied to the stability of tokamak plasmas subject...
-
The steep plasma pressure gradient that forms at the edge of the high confinement, H-mode regime of tokamak operation provides free energy to drive electromagnetic micro-instabilities that are widely believed to influence the transport processes in this so-called pedestal region. This high pressure gradient also provides a high current density (bootstrap current), known to influence ballooning...
-
The first pedestal stability and structure analysis on the new MAST Upgrade (MAST-U) spherical tokamak H-mode plasmas is presented. Our results indicate that MAST-U pedestals are close to the low toroidal mode number (n) peeling branch of the peeling-ballooning instability, in contrast with MAST H-mode pedestals which were deeply in the high-n ballooning branch. This offers the possibility of...
-
A new drift kinetic theory for the plasma response to the neoclassical tearing mode (NTM) magnetic perturbation is presented. Small magnetic islands of width, (a is the tokamak minor radius) are assumed, retaining the limit w ∼ ρ bi (ρ bi is the ion banana orbit width) to include finite orbit width effects. When collisions are small, the ions/electrons follow streamlines in phase space; for...
-
The high heat fluxes to the divertor during edge localised mode (ELM) instabilities have to be reduced for a sustainable future tokamak reactor. A solution to reduce the heat fluxes could be the Super-X divertor, which will be tested on MAST-U. ELM simulations for MAST-U Super-X tokamak plasmas have been obtained, using JOREK. A factor 10 decrease in the peak heat flux to the outer target and...
Explore
Topic
Outputs
- Publications (7)
Resource type
Publication year
Resource language
- English (7)