Your search
Results 15 resources
-
To be economically competitive, spherical tokamak (ST) power plant designs require a high beta (plasma pressure/magnetic pressure) and sufficiently low turbulent transport to enable steady-state operation. A novel approach to tokamak optimisation is for the plasma to have negative triangularity, with experimental results indicating this reduces transport. However, negative triangularity is...
-
First nonlinear gyrokinetic simulations of microtearing modes in the core of a MAST case are performed on two surfaces of the high-collisionality discharge used in Valovič et al (2011 Nucl. Fusion 51 073045) to obtain the favorable energy confinement scaling with collisionality, . On the considered surfaces microtearing modes dominate linearly at binormal length scales of the order of the ion...
-
Spherical tokamaks (STs) have been shown to possess properties desirable for a fusion power plant such as achieving high plasma β and having increased vertical stability. To understand the confinement properties that might be expected in the conceptual design for a high β ST fusion reactor, a 1 GW ST plasma equilibrium was analysed using local linear gyrokinetics to determine the type of...
-
We implement the higher order gyrokinetic theory developed in Dudkovskaia et al (2023 Plasma Phys. Control. Fusion 65 045010), reduced to the limit of , where B 0 is the tokamak equilibrium magnetic field, and B ϑ is its poloidal component, in the local gyrokinetic turbulence code, GS2. The principal motivation for this extension is to quantify the importance of neoclassical flows in...
-
We present herein the results of a linear gyrokinetic analysis of electromagnetic microinstabilites in the conceptual high reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production, https://step.ukaea.uk. We examine a range of flux surfaces between the deep core and the pedestal top for two candidate flat-top operating points of the prototype device. Local linear...
-
In this work, we present first-of-their-kind nonlinear local gyrokinetic (GK) simulations of electromagnetic turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak Spherical Tokamak for Energy Production (STEP). A prior linear analysis in Kennedy et al (2023 Nucl. Fusion 63 126061) reveals the presence of unstable hybrid kinetic...
-
The steep plasma pressure gradient that forms at the edge of the high confinement, H-mode regime of tokamak operation provides free energy to drive electromagnetic micro-instabilities that are widely believed to influence the transport processes in this so-called pedestal region. This high pressure gradient also provides a high current density (bootstrap current), known to influence ballooning...
-
A new drift kinetic theory for the plasma response to the neoclassical tearing mode (NTM) magnetic perturbation is presented. Small magnetic islands of width, (a is the tokamak minor radius) are assumed, retaining the limit w ∼ ρ bi (ρ bi is the ion banana orbit width) to include finite orbit width effects. When collisions are small, the ions/electrons follow streamlines in phase space; for...
-
Presentation given at the Theory of Fusion Plasmas Joint Varenna-Lausanne International Workshop September 2022
-
A new quasilinear saturation model SAT3 has been developed for the purpose of calculating radial turbulent fluxes in the core of tokamak plasmas. The new model is shown to be able to better recreate the isotope mass dependence of nonlinear gyrokinetic fluxes compared to contemporary quasilinear models, including SAT2 (Staebler et al 2021 Nucl. Fusion 61 116007), while performing at least as...
-
This paper discusses the importance of parallel perturbations of the magnetic-field in gyrokinetic simulations of electromagnetic instabilities and turbulence at mid-radius in the burning plasma phase of the conceptual high-β, reactor-scale, tight-aspect-ratio tokamak STEP. Previous studies have revealed the presence of unstable hybrid kinetic ballooning modes (hKBMs) and subdominant...
-
In magnetic confinement fusion devices, the ratio of the plasma pressure to the magnetic field energy, beta, can become sufficiently large that electromagnetic microinstabilities become unstable, driving turbulence that distorts or reconnects the equilibrium magnetic field. In this paper, a theory is proposed for electromagnetic, electron-driven linear instabilities that have current layers...
-
Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Due to the small electron-to-ion mass ratio and the large electron transit frequency, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes. However, in gyrokinetic simulations of ion-gyroradius-scale modes in axisymmetric toroidal...
-
Nonlinear multiscale gyrokinetic simulations of a Joint European Torus edge pedestal are used to show that electron-temperature-gradient (ETG) turbulence has a rich three-dimensional structure, varying strongly according to the local magnetic-field configuration. In the plane normal to the magnetic field, the steep pedestal electron temperature gradient gives rise to anisotropic turbulence...
-
The physics of the tokamak pedestal is still not fully understood, for example there is no fully predictive model for the pedestal height and width. However, the pedestal is key in determining the fusion power for a given scenario. If we can improve our understanding of reactor relevant pedestals we will improve our confidence in designing potential fusion power plants. Work has been carried...
Explore
Topic
Outputs
Resource type
- Journal Article (14)
- Presentation (1)
Publication year
- Between 2000 and 2025 (15)
Resource language
- English (15)