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Abstract: The analytical theory describing the resonant excitation and coupling of volume and surface fields on the surface of
two-dimensional complex electrodynamic structures is presented. The theoretical analysis is valid over a broad frequency
spectrum from mm-wave frequencies through THz and even optical frequencies. An experimental study of planar periodic
structures has been carried out using a vector network analyser calibrated to operate in the 140–220 GHz frequency range.
Experimental results compare resonant eigenmode formation in two periodic surface lattice structures designed to operate
within the 140–220 GHz frequency band; one periodic surface lattice etched onto a metal-backed substrate and the other
arranged to have an equivalent air separation. Dispersion diagrams derived from the analytical theory are presented. The
results and theory are fundamental to some of the routes to the innovation of high-power, mm-wave and THz sources, solar
cells, and novel sub-wavelength absorbers.

1 Introduction
Periodic structures, both one- and two-dimensional (1D and 2D),
have importance in ‘fast-wave’ and ‘slow-wave’ applications, for
instance in free-electron lasers where they can be implemented as
Bragg reflectors. Historically, periodic structures of coaxial,
cylindrical, and planar geometries have been studied [1–9]. The
current work, which concerns 2D planar and cylindrical periodic
surface lattice (PSL) structures, is driven by the desire for highly
overmoded high-power ‘slow-wave’ (Cherenkov) sources of
electromagnetic radiation. However, the theoretical, numerical, and
experimental results are also relevant to a number of other
electromagnetic applications. One of the defining and most
interesting properties of the 2D PSL structures of both geometries
is the observation of volume and surface fields, which co-exist at
the corrugated metal boundary and under suitable conditions [2–7],
can couple to produce a single cavity eigenfield. This eigenfield,
composed of ‘partial’ volume and surface fields, is the means
through which single-mode excitation in the oversized and highly
overmoded cavity is achieved. An important physical characteristic
of the 2D PSL structures is that the depth of the corrugation must
be small in relation to the source wavelength. When this transverse
dimension is less than an electromagnetic wavelength, the PSL can
be likened to an effective ‘meta-dielectric’, which supports a
unique hybrid eigenfield. High-power radiation sources at mm-
wave and THz frequencies can be constructed by passing an
appropriate electron beam close to the corrugated walls to facilitate
a successful interaction between the electron beam and the
eigenfield of the PSL. The theory also applies to frequencies
beyond the mm-wave and THz regions and extends, e.g. to optical
frequencies where Cherenkov radiation can be produced by the
exploitation of surface polaritons [10]. The PSL structures are
suited to applications in solar cells [11], novel sub-wavelength
absorbers [12, 13], compact antennae [14], and electromagnetic
filters [15–18] as well as the development of high-power radiation
sources, which are required for mm-wave and THz imaging [19,
20] and particle acceleration [21]. Periodic structures can be
fabricated using copper electrodeposition methods [2, 3], chemical
or laser etching [5–7] or additive manufacturing [4, 22].

This study delves into the complex field structure of the partial
surface field and its potential scattering mechanisms and shows
previously unpublished equations describing the complex field

structure of the surface field. We also discuss in more detail the
intermediate steps between the magnetic surface current boundary
condition and the definition of the complex integral term of the
coupled wave equation, providing greater insight into the
electromagnetic theory of the complex electrodynamic PSL
structures. Experimental measurements of a planar ‘air-gap’
structure, which, in the absence of the dielectric substrate, is more
electromagnetically similar to cylindrical PSLs than the planar
PSLs mounted on substrates, are presented.

2 Theory
The 2D cylindrical PSLs that have been the subject of past and
present studies and ongoing experiments at the University of
Strathclyde have a cosinusoidal corrugation that can be written in
the following form:

r~ = r0 + Δr
4 eim̄φ + e−im̄φ eik̄zz + e−ik̄zz (1)

where r0 is the mean radius, Δr is the corrugation amplitude, m̄ is
the number of azimuthal periods around the circumference of the
cylinder, k̄z = 2π /dz is the longitudinal lattice wavenumber and dz
is the lattice period. Previously, the eigenfield of a 2D PSL was
described as a slowly varying wave packet Wq z  composed of
oscillating terms by considering a fictitious magnetic surface
current jm. This description is valid only when the lattice
corrugation Δr is suitably shallow in relation to the source
wavelength, i.e. Δr ≪ λ . The transverse electric E and magnetic H
fields are expanded as a summation of the possible modes and
magnetic jm and electric je  surface currents are considered in
place of the lattice corrugation r~ to simplify the geometry of the
cavity to that of a smooth cylindrical waveguide. At the metal
corrugation, je = 0 and hence only the jm boundary condition
applies

jm = n × ∇ r~E ⋅ n + iωr~n × n × H (2)

The normal electric field component is defined En = E ⋅ n, where n
is the unit vector of the normal to the unperturbed waveguide wall.
In this analysis, the fictitious magnetic surface current acts as an
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external excitation source and a normalised wave equation is
obtained by integrating the Poynting vector around the
circumference of the cylinder as described in [6].

The Bragg resonance condition dictates that k̄z = kz
s − kz

v and
because we are considering a close to cut-off volume field, the
resonant frequency of the surface field ω0

s must coincide with the
Bragg frequency if successful eigenmode formation is to occur.
The Bragg detuning is δ̄ = ω − ω0

v 2 + ω0
s 2 /2 /c. Potential

sources of detuning include small ohmic, diffractive, and
dissipative cavity losses. Coupling of volume and surface fields is
best observed for a uniform, localised volume field with kz → 0.
The uniformity of the volume field is limited by the finite length of
the cavity contributing to the overall detuning. The detuning
between volume and surface modes Δ = ω0

s 2 − ω0
v 2 /2 /c has

been calculated for certain planar PSL structures, where direct
measurements of the partial surface field have been made. The
detuning and dispersive properties of the PSL structures are
considered in the analytical dispersion plots presented in Section 4.

The normalised wave equation derived in [6] is characterised by
the complex integral term ∮ jm ⋅ Hq

∗dσ, which must be defined to
obtain a complete description of the volume and surface fields that
form the cavity eigenfield. Evaluation of this term necessitates
taking the closed contour integral over the entire surface σ of the
cylinder. By assuming that the structure is sufficiently long
compared to its radius, whereby the integral contributions from the
two planar, open ends of the structure can be neglected, the integral
can be reduced to describe only the curved surface. We can define
an element of this surface as dσ = rdφdz, which is indicated by the
shaded region in Fig. 1. 

Considering the evaluation of the integral per unit axial length,
the contour surface integral over the whole cylindrical area can,
therefore, be reduced to a closed line integral over the angle dφ,
where φ is the azimuthal coordinate. The closed integral over dφ
from 0 to 2π is defined in (3), where U = jm ⋅ Hq

∗ is the integrand

∮ U r, φ dσ = ∫
0

2π
rU r, φ dφ (3)

We obtain a general expression for the right-hand side of the wave
equation given in [3, 6], where Nv, s = iωε/ ∮S⊥Hq

v, s ⋅ Hq
∗ v, s dφ  is

the wave norm, which is modified to describe the volume
(superscript v) or surface (superscript s) fields by multiplying by
the complex conjugate of the specified field, Hq

∗ v, s

Nv, s∮ jm ⋅ Hq
∗dσ = Nv, s∫

0

2π
r jm ⋅ Hq

∗
r = r0dφ (4)

We separate jm into two distinct terms I1 = n × ∇ r~E ⋅ n  and
I2 = iωr~n × n × H  in order to simplify this integration.
Multiplying I1 by Hq

∗ gives Hq
∗ × ∇ r~En n, which can be written

in the form: r~En ∇ × Hq
∗ − ∇ × r~En Hq

∗  through use of the
vector identity V × ∇ f = f ⋅ ∇ × V − ∇ × f V . It is known from
Maxwell's equations that Hq

∗ = iωεEq
∗, which can be used to

express Hq
∗I1 in terms of the complex conjugate of the electric field

Eq
∗, where ∇ × En . n = 0 to give Hq

∗I1 = iωr~En Eq
∗ . n . The term

Hq
∗I2 is written in a similar manner, albeit involving the tangential

magnetic field component Hτ, which results from taking the cross
product of the normal unit vector n and n × H such that
n × n × H = Hτ to obtain
Hq

∗I2 = iωr~n × n × H Hq
∗ = iωr~Hτ ⋅ Hq, τ

∗ . Together, these terms
define the jm ⋅ Hq

∗ term of the coupled wave equation, relevant to
both planar and cylindrical PSLs. Expanding over the full set of
modes gives

jm . Hq
∗ = iωr~ z, φ ∑

q
Wq z Eq, n . Eq, n

∗ + ∑
q

Wq z Hq, τ

⋅ Hq, τ
∗

(5)

where Eq, n
∗  and Hq, τ

∗  are the complex conjugates of the normal
electric field and tangential magnetic field components for the
close to cut-off (qth) mode, respectively. When considering an
azimuthally symmetric and close to cut-off volume field, where
kz ≅ 0 and Eq, n = 0, we can write

jm ⋅ Hq
∗ = iωr~ z, φ ∑

q
Wq z Hq, τ ⋅ Hq, τ

∗
(6)

The tangential magnetic field component can be separated into its
tangential magnetic volume and surface field components. The
cosinusoidal corrugation r~ inscribed on the inner cavity wall and
defined in (1) is substituted into (6) to give

jm ⋅ Hq
∗ = iω r0 + Δr

4 eim̄φ + e−im̄φ eik̄zz + e−ik̄zz

Hq, τ
∗ , v; s ⋅ Hq, τ

v r ∑
nv

Anv z einvk̄zz

+Hq, τ
s r cos msφ∑

ns

Bns z einsk̄zz

(7)

where ∑nv Anv z einvk̄zz and ∑ns Bns z einsk̄zz are Fourier expansions
describing the spatial harmonics of the slowly evolving volume and
surface fields along the longitudinal direction and A z  and B z
denote the volume and surface field amplitudes, respectively. The
complex conjugate of the tangential magnetic field Hq, τ

∗ , v; s is written
Hq, τ

∗ , v or Hq, τ
∗ , s depending on whether the volume field is scattering

into the surface field or vice versa.
At this stage, we average over the fast oscillation terms from 0

to 2π to eradicate the exponential terms that would otherwise
integrate to zero. In [6], we described the scattering associated with
the fundamental harmonic of the volume field and then considered
the more general cases of volume and surface field scattering.
Here, we take a more detailed approach, this time describing the
fundamental harmonic of the surface field ns = 0 interacting with
the nv = ± 1 spatial harmonics of the volume field and presenting
previously unpublished equations that give further insight into the
complex field coupling. To describe the forward and backward
scattering of the surface field with wave norm
N
~

s = − ω2ε/ ∮S⊥Hq
s ⋅ Hq

∗ , sdφ  we express ∮ jm . Hq
∗dσ as

Fig. 1  Schematic diagram showing the shaded element dσ = rdφdz  of
the integration surface
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∮ jm ⋅ Hq
∗dσ = N

~
S∫

0

2π

r r0 + Δr
4 eim̄φ + e−im̄φ eik̄zz + e−ik̄zz

Hq, τ
∗ , s(r, φ) ⋅ Hq, τ

v r ∑
nv

Anv z einvk̄zz

+Hq, τ
s r cos msφ∑

ns

Bns z einsk̄zz r = rodφ

(8)

which, when taking into account that Hq, τ
∗ , s r, φ = Hq, τ

∗ , s r cos m̄φ
and expanding the brackets can be written in the form
∮ jm ⋅ Hq

∗dσ = N
~

sr0
2∫0

2π X r = r0dφ, where X is the integrand,
comprising terms (i)–(iv).

(i) Hq, τ
∗ , s r0 cos m̄φ Hq, τ

v r0 ∑2 Wq
v z

(ii) Hq, τ
∗ , s r0 cos m̄φ Hq, τ

s r0 cos m̄φ∑ns Bns z einsk̄zz

(iii) 

Δr
4r0

eim̄φ + e−im̄φ eik̄zz + e−ik̄zz Hq, τ
∗ , s r0 cos m̄φ

Hq, τ
v r0 ∑

nv

Anv z einvk̄zz

(iv) 

Δr
4r0

eim̄φ + e−im̄φ eik̄zz + e−ik̄zz Hq, τ
∗ , s r0 cos m̄φ

Hq, τ
s r0 cos msφ∑

ns

Bns z einsk̄zz

Term (i) is at once neglected on the basis that
∫0

2π cos m̄φ dφ = 0 following integration. The integrand is further
simplified by eliminating (iv), which contains only surface field
terms, since the inclusion of (Δr /4r0), which partly determines the
strength of the coupling between the partial volume and surface
fields, requires both volume and surface field components.
Mathematically, einsk̄zz eik̄zz + e−ik̄zz ≠ 0 when ns = 0 and (iv)
vanishes after integration. In (ii) the Fourier expansion describing
the slowly changing surface field is reduced to B0 when considering
the fundamental surface field harmonic and we rewrite the
expression in cosine notation using the trigonometric identity
2cos m̄φ = eim̄φ + e−im̄φ  to obtain (see (9)) . Prior studies have
shown that the fundamental surface field harmonic interacts with
the ±1  spatial harmonics of the volume field and vice versa [3, 6].
The fast oscillation terms along the z-coordinate are expanded for
the nv = ± 1 volume field harmonics to get
einvk̄zz eik̄zz + e−ik̄zz = 1 + e±2ik̄zz. The remaining exponential term
then disappears after integration. The definition of jm ⋅ Hq

∗ for the
particular case of the fundamental surface field harmonic scattering
into the nv = ± 1 volume field harmonics is given by

jm ⋅ Hq
∗ = πN

~
sr0

2 Hq, τ
∗ , s r0 ⋅ Hq, τ

s r0 B0 z

+ Δr
2r0

Hq, τ
∗ , s r0 ⋅ Hq, τ

v r0 ∑
nv

Anv z
(10)

The first part of the equation describes the surface field formed
from the tangential component around the azimuth and the slowly
varying surface field amplitude in the longitudinal direction. This

provides a full description of the localised surface field
accumulating at the corrugation that does not involve the volume
field or contribute to the coupling. The second term describes the
resonant scattering of the surface field into the volume field that
leads to the excitation of a coupled, single cavity eigenmode. More
generally, the scattering of the surface field into the volume field is
investigated by multiplying the surface field components by e−insk̄zz

and discarding the terms that integrate to 0. Taking into account
that e−insk̄zz ⋅ einsk̄zz = 1, we obtain

∮ jm ⋅ Hq
∗dσ = r0

2N
~

s∫
0

2π Δr
2r0

cos m̄φ eik̄zz(1 − ns + nv) + e−ik̄zz(1 + ns − nv)

Hq, τ
∗ , s r0 cos m̄φHq, τ

v r0 ∑
nv = − ∞

∞
Anv z

Hq, τ
∗ , s r0 cos m̄φHq, τ

s r0 cos m̄φ∑
ns

Bns(z) dφ

(11)

which, after integration, leads to the derivation of a coupled wave
equation describing the scattering of either the fundamental surface
field or the ±2 spatial harmonics of the surface field into the ±1
spatial harmonics of the volume field [6].

3 Experimental measurement of PSL structure
The theory describing the coupled eigenfield of a 2D PSL is
relevant to structures of both planar and cylindrical geometry in the
case of the large radius approximation. It is known that planar
PSLs can be converted to cylindrical PSLs using the conformal
mapping method. The structures with the two different geometries
are both over-moded but in the case of the planar structure, the
volume field is less well defined and a dielectric substrate has
previously [5–7] been used to support field confinement via
internal reflection. The planar PSLs were designed under the
assumption that the periodicity dz of the lattice governs the
wavelength of the localised surface field λs inside each lattice cell
such that λs ≃ dz. The PSLs can be likened to an array of
rectangular waveguide apertures where the reflected frequency is
close to the cut-off of the fundamental waveguide mode [5].

Here, we compare the results for the planar PSL with period
1.94 mm, mounted on the copper-backed, 0.76 mm thick FR-4
substrate to a tunable ‘air-gap’ PSL structure composed of a 2D
PSL with period 1.94 mm, held by four nylon screws at a variable
distance from a copper backplate, as illustrated in Fig. 2. The air
separation was adjusted to ∼1.6 mm to maintain an equivalent
optical path length to that of the 0.76 mm FR-4 substrate used in
similar PSL structures [5, 6]. For the ‘air-gap’ structure, the PSL
was etched onto a thicker, 0.3 mm copper layer (compared to the
35 μm thick copper used in the PSLs with copper backed
substrates) in order to provide sufficient amplitude and therefore
coupling of the surface field in the absence of the dielectric. A full
description of the manufacturing and experimental techniques
relating to the fabrication and measurement of the planar PSLs is
given in [5].

Fig. 3 shows measurements made using a vector network
analyser (VNA) and a pair of high-frequency modules assembled
with two 140-220 GHz standard 20 dBi gain rectangular horn
antennae transmitting and receiving, respectively, a plane-polarised
wave with the electric field vector orthogonal to the plane of
incidence. For these reflection measurements, the transmitting and
receiving antennae were carefully positioned with an equal angle of
incidence and reflection and both at the same distance from the

∮ jm ⋅ Hq
∗dσ = N

~
Sr0

2 Hq, τ
∗ , s(r0) ⋅ Hq, τ

s (r0)B0(z)∫
0

2π 1
2 + 1

2cos m̄φ dφ

+∫
0

2π Δr
2r0

eik̄zz + e−ik̄zz Hq, τ
∗ , s(r0)Hq, τ

v (r0)cos2m̄φ∑
nv

Anv z einvk̄zz dφ
(9)
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PSL, just within the farfield [5, 7]. Transmission measurements
(Fig. 4) were made only for the mesh PSL with no metal backplate

and in this arrangement, the transmitting and receiving antennae
were directly aligned with the PSL equidistant between the two
antennae and rotated through an angular range of 0°–90°. The
VNA was calibrated to operate within the 140–220 GHz frequency
range and measurements were made for both the ‘air-gap’ PSL (red
trace) and the conventional PSL (blue trace) at a fixed incident and
measurement angle of 60°.

A high-Q resonance is observed at 145 GHz for the ‘air-gap’
PSL and 146 GHz for the conventional 1.94 mm PSL etched on the
dielectric substrate. This frequency is different from that of the
surface field at 60° (141 GHz), which has been measured directly
in a 1.94 mm mesh PSL (equivalent to the ‘air-gap’ PSL without
the copper backplate) as shown in Fig. 4. The results for the two
PSL structures are in close agreement with a frequency discrepancy
of just 1 GHz, which may arise due to the minor changes in
experimental alignment, suggesting that the ‘air-gap’ structure has
the potential to support volume and surface field coupling at some
angles.

We note that the reflected power for the ‘air-gap’ structure (∼
−49 dB) is substantially greater than that for the PSL with the
dielectric substrate (∼−41 dB), which may occur due to a reduction
in dielectric losses. However, despite smaller dielectric losses, the
‘air-gap’ structure does not support eigenmode formation and
‘mode-locking’ at all angles unlike the metal-substrate backed
PSLs [5–7], possibly due to more energy escaping from the
unbound edges at certain angles. Also, without the dielectric
providing the spacing between the two planar surfaces, it is more
difficult to maintain the uniform separation required to control the
frequency definition of the volume mode over the area of the
planar structure.

Nevertheless, since these ‘air-gap’ planar PSLs closely
approximate electromagnetically to ‘vacuum-gap’ planar PSLs, the
results show potential for ‘vacuum-gap’ planar PSLs to be
combined with a sheet electron beam [23] and, therefore,
incorporated into high-power radiation sources. The applications in
high-power radiation sources are in addition to the wide-ranging
applications that include solar cells, filters, and perfect absorbers.

In our previous work, only cylindrical ‘meta-dielectric’ PSLs
constructed solely from conducting material, e.g. copper, with no
dielectric lining were considered for high-power radiation sources.
Owing to the ‘oversized’ radius r of the cylindrical structures
r ≫ λ , a ‘quasi-planar’ approximation can be applied [2, 3, 6, 8,

9], where the cylindrical structure is described by a planar PSL,
without a dielectric substrate. The ‘air-gap’ planar PSL, therefore,
more closely resembles the 2D cylindrical PSLs used in electron
beam driven experiments at the University of Strathclyde [4], than
the previous planar PSLs with dielectric substrates, since here no
dielectric material is included and the corrugated surface structure
behaves as a ‘meta-dielectric’.

The ability to adjust conveniently the separation between the
PSL and the metal backing means that a structure of this type could
possibly be used to compensate for the detuning associated with
the difference in angular frequency of the volume and surface
fields by subtly adjusting the separation between the PSL and the
metal backplate to observe optimum coupling. This could be
advantageous in applications where a specific eigenmode
frequency is required.

4 Analytical dispersion plots
In the coupled eigenfield dispersion equation presented in [3, 6],
the detuning parameters have been renormalised using division by
the parameter K̄ , where K̄ = Ω/c and

Ω = ω0
v 2 + ω0

s 2

2
(12)

The renormalised Bragg detuning parameter δ and the detuning of
the volume and surface field angular cut-off frequencies Δ  are
written

Fig. 2  Schematic diagram showing ‘air-gap’ PSL structure with period
1.94 mm

 

Fig. 3  Reflection measurements for the 1.94 mm ‘air-gap’ PSL (red trace)
and the 1.94 mm PSL (blue trace) mounted on a copper backed dielectric
substrate

 

Fig. 4  Transmission measurements for the 1.94 mm mesh PSL (no metal
back plate) showing surface field at different irradiation angles (0ͦ°–90°)
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δ = ω − ω0
v 2 + ω0

s 2

2

1/2

/ ω0
v 2 + ω0

s 2

2

1/2

= ω − Ω
Ω

(13a)

Δ = ω0
s 2 − ω0

v 2

2

1/2

/ ω0
v 2 + ω0

s 2

2

1/2

(13b)

The overall detuning Γ = 2k̄zc/ ω0
v 2 + ω0

s 2 1/2
 takes into account

the permittivity, substrate thickness (or air separation), and lattice
periodicity. The present analytical study has been carried out
assuming that α ∼ 0.45 [6]. A unit cell of the planar PSL was
modelled with periodic boundaries using the electromagnetic
solver CST Microwave Studio and eigenmode calculations over a
large number of modes were used to establish the approximate cut-
off frequency of the volume field at an incident angle of 0°. The
surface field, observed exclusively in the 1.94 mm mesh PSL,
exists within the region of 185–200 GHz at 0°. The analytical
dispersions at 0° differ from the experimental measurements shown
in Fig. 3, which were made at oblique incident angles. The volume
field eigenmode calculations performed using CST MWS are also
applicable to the case of an incident angle of 0°, but serve as a
good approximation for the cut-off frequency of the partial volume
field at all incident angles.

The transmission measurements [24] of Fig. 4 showed that the
frequency of the surface field at normal incidence is much higher
than predicted by the λs ≃ dz approximation [5], which in turn
affects the detuning and dispersive properties. Provided with an
initial value of the renormalised Bragg detuning δ, the dispersion
equation [3, 6] is solved over a number of data points by increasing
δ in small increments δ = δ + Δδ and solving for the normalised
wave vector Λ for each value of δ. For every iteration, kz and ω are
evaluated from the relations

kz = Λ
c

ω0
v 2 + ω0

s 2

2

1/2

(14a)

ω = δ ω0
v 2 + ω0

s 2

2

1/2

+ ω0
v 2 + ω0

s 2

2

1/2

(14b)

Analytical dispersion diagrams for the ‘air-gap’ structure at 0° and
60°, both for separation of 1.6 mm, are presented in Figs. 5a and b,
respectively. The solid black traces represent the coupled eigenfield
dispersion, while the dashed and dot-dashed grey traces show the
uncoupled surface and volume field dispersions, respectively. The
surface field is characterised by an imaginary transverse
wavenumber and the surface field spatial harmonics are evident at
large values of kz.

Fig. 5a shows the dispersion diagram for the ‘air-gap’ structure
at 0° when Γ < 2 and Δ = 0.53. The surface field harmonics
cross one another below the cut-off frequency of the uncoupled
volume field, distorting the overall appearance of the dispersion.
We note that Γ ∼ 2 when the periodicity of the PSL is chosen
such that k̄z

2 = k⊥
v 2 + k⊥

s 2
, where k⊥

v  and k⊥
s  are the transverse

wavenumbers of the volume and surface fields. The number of
coupled dispersion branches and their frequency location are
influenced by where the surface field harmonics intersect one
another. The surface field frequency and parameter values of both
Γ and Δ  predict the frequencies and wavenumbers at which
coupled eigenfield solutions exist. Different dispersive properties
are typically observed as Γ is increased beyond 2  and the surface
field harmonics intersect at higher frequencies.

The dispersion for the ‘air-gap’ structure at 60° where Γ ∼ 2
and Δ = 0.36 is provided in Fig. 5b. Owing to the reduced
frequency separation between the volume and surface fields at the
larger incident angle, the surface field harmonics intersect at a
higher frequency. Here, a backward wave interaction with an

electron beam is viable, demonstrating that, if the planar air-gap
PSL is intended for use in a novel radiation source in combination
with a sheet electron beam, the PSL must be positioned at a
suitable angle from the excitation source.

5 Conclusion
Complex integral equations describing the surface field scattering
into the volume field are presented in this study. The surface field
is studied experimentally through the use of a novel 2D ‘air-gap’
PSL structure, which more closely resembles the 2D cylindrical
PSL structures used in the electron beam driven experiments and
without the dielectric material, the corrugated surface behaves
more like a meta-dielectric. Transmission measurements show the
surface field frequency shifting significantly, depending on the
irradiation angle. Despite the absence of a dielectric substrate, it
has been shown that the coupling of the surface field with a weakly
defined volume field formed between the two planar copper layers
is still possible, resulting in a coupled cavity eigenmode at an
irradiation angle of 60°.

It has been shown both experimentally and analytically by
solving the coupled dispersion equation that volume and surface
field coupling in the ‘air-gap’ structure is most effective at more
oblique incident angles where there is less frequency disparity
between the volume and surface fields. The coupled dispersion
analysis demonstrates that a backward slow-wave interaction with
an electron beam is feasible. The planar ‘air-gap’ PSL discussed in
this study is relevant to a number of electromagnetic applications
including novel, high-power mm-wave and THz radiation sources,
solar cells, ‘perfect’ absorbers, and tunable filters.
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