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Abstract
A numerical simulation is presented concerning an L/O mode electromagnetic wave propagating
normally into an overdense magnetised plasma with a smooth density gradient leading to
excitation of Langmuir turbulence in the vicinity of the reflection point. The simulation
parameters are chosen to represent an ionospheric radio frequency heating experiment but may
have relevance to other situations. The simulation model is one-dimensional for large-scale
electromagnetic waves and two-dimensional for short-scale electrostatic waves. This allows
consideration of local modulational and parametric-decay instabilities as well as the larger scale
depletion of the driver electromagnetic wave by anomalous absorption due to the excited
turbulence. Simulated growth rates are shown to be in broad agreement with expected values and
the evolution of the spatial distribution of the turbulence and driver field profile are presented
along with simulated scatter radar spectra.

Keywords: ionospheric heating, Langmuir turbulence, multiscale simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Ionospheric radio heating experiments performed over the
past decades have utilised the ionosphere as a ‘natural plasma
laboratory’ to study the interaction of electromagnetic waves
with plasma in parameter regimes not easily accessible in
laboratory experiments [1–5]. As transmitter powers have
increased various effects have been observed including sec-
ondary electromagnetic emissions (SEE), optical emissions
and more recently at the HAARP facility descending artificial
ionospheric layers involving enhancement of the ionospheric
plasma density [3].

In the initial phase of heating experiments it is believed
that the main nonlinear plasma process is that of Langmuir
turbulence excited near the reflection layer where the

matching condition that the input frequency be near the local
plasma frequency is met. This permits the parametric exci-
tation of low frequency ion waves and high frequency
Langmuir waves. It is also understood that at later times field-
aligned striations may form leading to upper-hybrid effects at
somewhat lower altitudes [4–6]. The focus of this work is on
the first few 10 s of milliseconds during which Langmuir
turbulence may be dominant.

Langmuir turbulence is now a well-understood process
[7, 8] with many detailed simulations having been performed
using fluid [9, 10], Vlasov [11], PIC [12, 13] and quasilinear-
kinetic [13] models. However, a common feature of many
models is the use of periodic boundary conditions (sometimes
with an ad hoc partially periodic/open boundary) and the
assumption of a given spatially homogeneous background
plasma density and driver field estimated from the initial
electromagnetic wave profile. This work attempts to address
this limitation with a more satisfactory electromagnetic driver
model and a realistic background plasma density gradient. A
one-dimensional model [14, 15] is generalised to two
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dimensions, allowing modelling of electrostatic waves excited
in directions other than the direction of the background
density gradient, but still restricting the electromagnetic wave
variation to be one-dimensional parallel to the background
density gradient (however we note that in [15] a scheme was
developed to allow for off-vertical electromagnetic incidence
at a fixed angle). Large-scale two-dimensional electro-
magnetic simulations of ionospheric heating scenarios have
been performed in other works [6, 16, 17] but not with the
aim of simultaneously resolving electrostatic Langmuir tur-
bulence excited by the electromagnetic driver.

Limitations of the simulation include the omission of
certain plasma kinetic effects and higher order nonlinearities
not handled by the modified Zakharov treatment as well as the
still limited dimensionality. The coupling to lower-hybrid
waves is also neglected but may be important at the upper-
hybrid layer on longer timescales. However, the simulation
does allow the modelling of driver depletion of the electro-
magnetic wave which may be important at large input powers
and conditions of highly developed turbulent modulation of
the plasma.

2. Numerical method

A modified Zakharov model is used with a complex envelope
representation for the high frequency variables:

A A tRe exp i , 10w= -( ˜ ( )) ( )

where Ã is a complex amplitude and ω0 is the transmitted
angular frequency. Tildes will henceforth denote complex

envelope variables. A direct representation for the low fre-
quency variables is used. The simulation domain is two-
dimensional with a background density gradient in the
z-direction and a background magnetic field lying in the y/z
plane.

The ionospheric heating scenario and simulation domain
are illustrated in figure 1. In the z-direction the main part of
the simulation box lies between z=0 and z L ,BODY= with
absorbing perfectly matched layers (PMLs) of length LPML at
either end of the simulation.
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The y-direction uses periodic boundary conditions. The
generalised Zakharov model linearises most of the system
retaining only the nonlinear refraction and ponderomotive
force terms to allow coupling of high frequency oscillations to
low frequency density perturbations. In the following sections
the model equations and their spatial discretisation are pre-
sented; appendix A describes the timestepping scheme.

2.1. Electromagnetic coarse grid system

The electromagnetic part of the simulation, represented by the
transverse fields E E cB cB, , ,x y x ytrans, trans,˜ ˜ ˜ ˜ is one-dimensional
such that these variables depend only on the z-coordinate and
are assumed to be spatially constant in the y-direction,
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Figure 1. Ionospheric heating scenario and schematic of simulation setup (lower right dashed box) focused on a region near the incident
O-mode reflection point.
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in particular E ytrans,˜ is taken to be the 0th Fourier harmonic in
the y-direction of the y-component of the electric field, to
which is added the electrostatic part E ystatic,˜ described in
section 2.2.
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In the boundary PMLs the equations are modified as in
equations (7)–(14) where auxiliary variables FEx y,

~
and FBx y,

~

are introduced according to standard principles [18–20], with
the damping factor PMLs depending quadratically on the dis-
tance into the PML:
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⎠⎟( ) ∣ ( )∣ ( )

where zPML is the distance into the PML, R is the design
amplitude reflection coefficient and λ0 is an estimate of the
plasma-modified L/O mode electromagnetic wavelength at
the start of the PML. CUT,PMLw is a PML cut-off frequency as
in the complex-shifted PML formulation [19] but in practice

this term seems to have had little effect on the simulation.
The choice of a PML as an absorbing boundary may not be
the best choice in that for a dispersive plasma medium the
reflection coefficient will depend on frequency and in part-
icular waves which are close to the plasma cut-off frequencies
will be poorly absorbed. Possible alternatives include ramping
up plasma collisionality or adding a diffusive term but too
rapid a gradient would also lead to reflections. In a 2D
electromagnetic model of magnetised plasma, waves with
oppositely directed phase and group velocities in the direction
of the absorber can give rise to numerical instabilities, but
for the 1D electromagnetic model used here this is not an
issue.

A nested grid scheme is used where the electromagnetic
variables, in addition to depending only on the z-coordinate,
are represented on a coarser grid in the z-direction with larger
spatial step than variables on the fine grid. This alleviates the
restrictive Courant explicit timestepping limit that would exist
were all variables represented on the same fine grid required
to represent the smallest scales excited in the simulation [14]
and is justified by the assumption that the electric field of
short-scale waves in the simulation is primarily electrostatic
and therefore longitudinally polarised. The use of a one-
dimensional electromagnetic model may be similarly justi-
fied. The electromagnetic variables are coupled to the fine
grid variables via the current densities Jx y,˜ with local aver-
aging performed in the y and z directions as described in
section 2.4. External current densities Jx y, ,drive˜ are added to
launch the input electromagnetic wave, with the source placed
slightly in front of the bottom PML zone, spread out over 20
coarse gridpoints (about 1/3 wavelength) with a smoothed
profile, and Jx y, ,drive˜ chosen to give an input L/O mode with
the desired amplitude.

2.2. Fine grid plasma system

Only electron dynamics are considered on the fast timescale,
with the plasma represented by the current densities Jx y z, ,˜ and
electron density perturbation n ,fast˜ moderated by the slow
timescale density perturbation n .slow The evolution of these
variables is governed by:
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The thermal term on the right-hand sides of equations (17)
and (18) allows the propagation of Langmuir/upper-hybrid
waves. Damping is provided by an electron collision frequency

cn and a model electron Landau damping eLn̂ operator acting on
Jỹ and Jz̃ as described in appendix B.

A linear background density profile
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is used, to which is added the slow timescale density per-
turbation n .slow This is the only nonlinearity included in the
fast timescale system, allowing high frequency waves to
scatter off low frequency density perturbations.

The fast timescale electrostatic potential is defined by:
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The Von-Neumann boundary condition in equation (27) used
at the top of the simulation is appropriate for the 0th y-Fourier
component of the electrostatic potential but is less justified for
the nonzero Fourier modes; a condition based on the ansatz

k y k zexp i y ystaticf ~ -˜ ( ∣ ∣ ) might be more appropriate but no
ill-effects have been observed using the Von-Neumann con-
dition as stated.

The slow timescale response is represented by the vari-
ables nslow and nslow as follows:
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and is driven by a ponderomotive force term calculated from
the high frequency current density. The response is modelled
as a single mode ion acoustic wave, assuming the electrons to
have the same number density as the ions on the slow time-
scale, with an ion Landau damping operator iLn̂ used as
described in appendix B which makes the ion acoustic
response heavily damped. It is known that this is a limited
model of the low frequency response due to more complex
ion kinetic effects [21]. The values of nslow were initialised
with small (of order 4× 10−5 n0) random numbers to seed the
instabilities in the simulation.

2.3. Spatial discretization

On the fine grid a Fourier representation in the y-direction and
a finite-difference representation in the z-direction are used. A
staggered grid scheme is used where all variables except for Jz̃

are regarded as being located on z-gridpoints, numbered by a
z-index i and Fourier y-index j, while Jz̃ is located in between
z-gridpoints, numbered by a half-integer index i+ 1/2. All
z-derivatives are approximated using centred stencils as in
equation (33) whilst the y-derivatives are computed using
exact Fourier differentiation as in equation (36). Where
required for the magnetic field term and the evaluation of the
nonlinear terms, variables are transferred between the stag-
gered grids using spatial averaging as in equation (35). The
solution is stored primarily in Fourier y-space but is trans-
formed to and from real y-space to evaluate the nonlinear
terms.
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On the coarse grid a similar staggering scheme is
employed where E x ytrans, ,˜ and FBx y,

~
are stored on integer

gridpoints while cBx y,˜ and FEx y,
~

are stored on half-integer
coarse gridpoints. Derivatives on the coarse grid are evaluated
in a manner analogous to equation (33).

2.4. Coarse/fine grid coupling

A fixed ratio between the coarse and fine grids is used in the
z-direction. The fine gridpoints are regarded as being located
at positions given by: z z ,coarse + ¢ where zcoarse is the
location of a coarse grid point and z k zfine¢ = D with

k N0 coarse fine < / where Ncoarse fine/ is the ratio between the
coarse and fine grid sizes. To transfer Etrans˜ from coarse to
fine, it is assumed that the coarse grid variables represent
variation that is independent of y, so that they are assigned to
the 0th y-Fourier mode. To achieve interpolation in the
z-direction cubic b-splines are used,
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such that a strict interpolation is not used but some smoothing
is applied in the process. To perform the averaging of Jx y,˜
from fine to coarse the transpose of the interpolation operator
is used with an appropriate weighting factor. At the simula-
tion boundaries the stencils are not modified but it is simply
assumed that all variables outside the computational domain
are 0. This has little effect since the variables are strongly
damped in the PML zones.

2.5. Boundary conditions

In addition to the PML zones described in section 2.1
boundary conditions must be specified at the ends of the
PMLs. Ideally if the PMLs perform well this should not be a
major issue, and Dirichlet (perfect conductor) conditions
E 0x ytrans, , =˜ at z LPML= - and z L LBODY PML= + are used
on the coarse grid. On the fine grid Dirichlet conditions are
used for all variables except for the electrostatic potential as
described in section 2.2. In the context of the staggering
scheme this means that a Dirichlet condition is obtained for Jz̃

at the bottom boundary and for nfast˜ at the top boundary, but
this is modified so that a Dirichlet condition on Jz̃ at both
boundaries is obtained with a view to keeping the total high
frequency charge density constant.

In practice these simple boundary conditions do allow
reflections of short-scale waves and low amplitude spatial
oscillations accumulate near the boundaries as the simulation
proceeds, particularly in nfast˜ and J .z̃

z
z

L
. 39c,PML PML c c,extraPML
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3

n n n= +
⎛
⎝⎜

⎞
⎠⎟( ) ( )

The electron collision frequency was ramped up in the PML
zones as in equation (39) in an attempt to mitigate this effect,
but the increase in the collision frequency was probably not
chosen large enough to make much difference. One may
speculate that either the extra collisionality could be increased
or perhaps a variable spatial diffusion could be added to try to
damp short-scale waves reaching the boundary, with care
taken not to introduce further reflections by too fast a gra-
dient. Formally correct outflow boundary conditions instead
of a ‘sponge’ region are challenging to design for this pro-
blem due to the magnetised 2D plasma behaviour. In any case
the amplitude of the fine grid boundary oscillations has been
deemed low enough to ignore so this problem has not been
addressed more carefully.

2.6. Simulation parameters

The simulation is designed to represent an ionospheric heat-
ing experiment by simulating a stretch of plasma at the L/O
mode cut-off near the F2 peak of the Ionosphere, typically
located between 200 and 300 km above the Earth’s surface.
Parameters relevant to experiments at the HAARP facility
have been chosen as displayed in table 1. The choice of the
simulation domain size LBODY is a trade-off between mana-
ging computer resources and ensuring a realistic simulation
which models the large difference in spatial scale between the
density profile and the free-space electromagnetic wave-
length. In practice for many experiments the ratio can be

Table 1. Physical simulation parameters.

Parameter name Symbol Value

Input frequency 0w 2 3.2 MHzp ´
Minimum plasma frequency pe, minw 2 3.12 MHzp ´
Maximum plasma frequency pe, maxw 2 3.23 MHzp ´
Length of density slope LBODY 2.56 km
Cut-off density location zcut off- 1.86 km
Density gradient length scale L 37.5 km
Cyclotron frequency cew 2 1.39 MHzp ´
Magnetic field angle α 194°
Electron temperature Te 3000 K
Ion temperature Ti 1500 K
Ion mass (O+ ions) mi 16 amu
Input power flux Sz,in 4.42 10 Wm5 2´ - -

Approximate input wavelength 0l 177 m
Electron collision frequency cn 500 s 1-

Critical density ncrit 1.27 10 m11 3´ -

Electron thermal speed vTe 2.13 10 ms5 1´ -

Electron Debye length Del 0.0106 m
Ion acoustic speed Cs 1970 ms 1-

Simulation duration T 10 ms
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significantly larger than that simulated in this work, but we
believe that the length simulated is still large enough to be of
relevance. The width of the PML layer LPML was chosen large
enough to ensure good absorption of electromagnetic waves
without excessive computational cost. Note that the input
power flux represents an equivalent radiated power (ERP) of
only 35MW assuming that the distance between the trans-
mitter and F2 peak is around 250 km, which is considerably
less than the maximum ERP of HAARP which is several GW.
Even with this reduced level of input power plasma density
perturbations ultimately exceeding the validity of the present
model are observed in the cavitation region near the incident
O-mode cut-off with density depletions of order 50%
observed in collapsing wavepackets. As described in
appendix B, the numerical electron Landau damping operator
had to be enhanced to prevent the occurrence of negative
densities.

The driver current density is applied to a small region of
the simulation in front of the bottom PML, with polarisation
calculated for an input L/O mode with wavevector in the
z-direction:

E

Bc

0.152 0i, 0 0.199i, 0 0.237i

0 0.105i, 0.081 0i, 0 Vm .1

= - + - -
= + - + -

˜ ( )
˜ ( ) ( )

The driver current density is determined from the
wave magnetic field amplitudes as J Ac z2drive 0e= ´˜ ˆ
Bc z zinput lanuchd -˜ ( ) where the delta function is numerically
approximated as a localised function with a width of 20
coarse gridpoints and A is a correction factor of order unity.
The source launches waves in both directions but the bottom
PML absorbs the downwards wave. The amplitude of the
source is ramped up from 0 to its target value with a char-
acteristic time of 40 input wave periods.

Numerical parameters are presented in table 2. A longer
spatial step is used for the y-coordinate because electrostatic
waves which are excited in the simulation are directed mainly
parallel to the background magnetic field (which points nearly
perpendicular to the y-direction) and thus have a relatively
long wavelength in the y-direction.

3. Simulation results

This section contains an analysis of the simulation predictions
with respect to the evolution of the electromagnetic wave, the
small-scale electrostatic turbulence and simulated radar
spectra.

3.1. Large-scale electromagnetic field evolution

At the early stages of the simulation the electromagnetic wave
reflects from the plasma density gradient at the O-mode cut-
off and forms an Airy-like standing wave pattern displayed in
figures 2(a) and (b) [22]. In figure 2 the electric fields have
been smoothed in space to filter out the short-scale electro-
static turbulence and extract the electromagnetic waves. Near
to the cut-off the wave is polarised almost parallel to the
background magnetic field. Following the development of
turbulence and resulting anomalous absorption the driver
profile is depleted as shown in figures 2(c) and (d). The initial
peak field of E 3 Vmz

1= - at the final antinode is depleted to
around E 1.2 Vmz

1= - after 4 ms. Additionally, following the
development of turbulence, mode conversion from the input
O-mode to the Z-mode or slow X mode is enabled in the
region z 1346 1860 m= - where both modes are propa-
gating as illustrated in figure 3, and there is consequently a
small amplitude Z-mode wave seen above z 2200 m= in
figures 2(c) and (d) which may propagate to the top boundary
and be absorbed by the PML located there.

Figure 4 displays the z-component of the electromagnetic
Poynting flux S c E cB E cB2 Rez x y y x0 * *e= -( ˜ ˜ ˜ ˜ )/ at the start
of the simulation and following the development of turbu-
lence. The decomposition into wave modes was performed by
projecting the amplitudes of the 4 transverse electromagnetic
variables E E cB, ,x y x˜ ˜ ˜ and cBy˜ onto a basis formed by the 4
cold plasma electromagnetic wave modes with frequency 0w
and wavevector in the z-direction. In this we assume that most
of the coarse grid wave energy is in fact at frequency 0w
(which is 0 frequency in the envelope representation) which
will not be a good approximation after the development of
strongly nonlinear effects, and furthermore the decomposition
into different wave modes will be invalid near cut-offs and
resonances even for monochromatic waves. At early times
there is approximately 90% reflection; the 10% absorption is
due to the electron collision term. Following the development
of turbulence there is nearly total absorption of the incident
wave, and this is also visible in figure 2 where the electro-
magnetic wave pattern transforms from a near perfect stand-
ing wave to a propagating wave pattern. One sees in
figure 4(c) that at time 4 ms the anomalous absorption is
highly concentrated near the cut-off altitude at z 1860 m.=

Figure 5(a) displays a wideband power spectrum of the
y-component of the electric field at a point near the lower
boundary of the simulation over the time range 3–10 ms using
a Hann window in time, and figure 5(b) displays the cold
plasma dispersion relation at this point in space assuming
propagation in the z-direction. This point is well below the
strongest turbulence in the simulation. At this location the
local plasma frequency is 3.126MHz such that the local

Table 2. Numerical simulation parameters.

Parameter name Symbol Value

Fine grid y spatial step Δy 0.075 m
Number of y-gridpoints Ny 512
Length of domain in y-direction Ly 38.4 m
Fine grid z spatial step zfineD 0.025 m
Fine/coarse grid ratio Ncoarse fine/ 128
Coarse grid z spatial step zcoarseD 3.2 m
PML length LPML 128 m
PML reflection coefficient R 1.27 10 3´ -

PML cut-off omega CUT,PMLw 2 50 kHzp ´
PML extra collision frequency c,extraPMLn 10 s4 1-

Initial nslow noise amplitude nrandomise 5 10 m6 3´ -

Timestep Δt 8 ns
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O-mode cut-off appears at f 74 kHz.D = - Downwards pro-
pagating O-mode waves with frequency above this cut-off
will propagate into less dense plasma and can potentially
escape into vacuum. In figure 5(a) one sees a tightly peaked

feature around the incident driver wave at f 0 kHzD = which
may correspond to waves generated at higher altitudes due to
turbulence which have then propagated downwards to this
measurement point in the O-mode.

Signals with frequencies below the local O-mode cut-off
cannot couple into the escaping O-mode but can potentially
propagate in the Z-mode, which in the cold plasma approx-
imation has a resonance at f 52 kHz.D = - However, as this
mode propagates downwards it will eventually reach a point
where its frequency equals the local resonance frequency and
it should then become an oblique upper-hybrid/Langmuir
wave and be absorbed by Landau damping. In figure 5(a) one
may identify a small amplitude downshifted spectrum in the
local Z-mode although the power is weak when the loga-
rithmic scale is considered. One must consider that at the
measurement point there may be short-scale electrostatic
waves present which might confuse the interpretation of the
spectrum in terms of the cold plasma dispersion relation (in a
full treatment the Z-mode becomes an oblique upper-hybrid/
Langmuir wave above its cold plasma resonance frequency),
but by analysing Ey,trans˜ this should have been mitigated to
some extent.

If one assumes that the downwards L/O mode signal at the
bottom of the simulation is a reasonable measure of the radia-
tion that would escape from the ionosphere during a heating
experiment then one may extract an SEE spectrum as in
figure 6. This is a highly simplistic view due to the restriction to
1D vertical up/down propagation imposed by the simulation
and the possibility of contamination by other wave modes

Figure 2. Magnitudes of the electric field components Ey˜ (a), (c) and Ez˜ (b), (d) before the development of turbulence at time 0.5 ms (a), (b),
and after the development of turbulence at time 4 ms (c), (d). The y-field is the electromagnetic part E ytrans,˜ and the z-field has been smoothed
in the z-coordinate and averaged in the y-direction. The fields decrease rapidly in the PML region z 0.<

Figure 3. Real part of kz for cold vertically propagating k 0x y, =( )
plasma modes as a function of z assuming plasma density gradient in
equation (23) and a fixed frequency .0w The input 3.2 MHz L/O
mode has a vacuum wavelength of 94 m. The plasma response
increases this to 177 m at the bottom boundary of the simulation, and
the O-mode reaches its cut-off at z=1860 m where .0 pew w= The
Z-mode (or slow X mode) has its electrostatic resonance at
z=1346 m based on the 194° angle to the background magnetic
field. The R/X mode cut-off occurs below the bottom boundary of
the simulation and the Z-mode cut-off above the top boundary for
the density profile used.
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which cannot escape from the ionospheric plasma into vacuum.
The spectrum is displayed when measured at two different
heights and it is seen that the curves overlap almost exactly,
suggesting that most of the secondary O-mode radiation comes
from turbulence in a small region near the incident O-mode cut-
off altitude. Whilst local signals with large frequency down-
shifts may be present in regions exhibiting SLT only those in a
small frequency band around the local plasma frequency will be
able to escape downwards in the O-mode, whilst all upshifted
signals should be able to escape [23].

3.2. Evolution of electrostatic turbulence

In the initial stage of the simulation exponential growth of
electrostatic waves occurs due to parametric instabilities

driven by the electromagnetic driver wave. The strongest
instability is a purely-growing modulational instability (his-
torically also known as an oscillating two stream instability)
occurring at the final standing wave maximum where the
driver amplitude is strongest and the driver frequency is very
close to the local plasma frequency. Figures 7–9 display the
evolution of the slow density perturbation evolving between
0.5 and 1.5 ms near z=1800 m. Waves are mostly excited
along the direction of the background magnetic field and the
simulation growth rate displayed in figure 9(a) is seen to be
consistent with a theoretical calculation using local plasma
parameters displayed in figure 9(b) (this calculation is out-
lined in appendix C). The simulation wavenumber resolution
in the y-direction is limited due to a small domain size in the
y-direction. Of note in figure 9 is that the growth rate parallel

Figure 4. Total z-component of the Poynting flux (a), (c) and its distribution among cold plasma electromagnetic modes (b), (d) at times
0.5 ms (a), (b), and 4 ms (c), (d) before and after the development of electrostatic turbulence. Data is normalised by the estimated input
Poynting flux S 4.42 10 Wm .z,in

5 2= ´ - - The upwards and downwards Z-mode amplitudes have been multiplied by 50 in (b), (d) for ease of
visualisation.
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to the z-direction is 0 because the region is located above the
Z-mode resonance at z=1346 m for propagation in the
z-direction such that the magnetic field effectively cuts off
Langmuir/upper-hybrid electrostatic wave propagation in the

z-direction for wave frequency near the driver frequency (for
an unmagnetized plasma a much broader growth character-
istic would be expected). This feature has the important
consequence that a 1D simulation in which waves are
restricted to be directed in the vertical direction might not
exhibit growth of electrostatic waves at the highest standing
wave maximum and the turbulence may be non-physically
restricted to lower altitudes. However a larger input amplitude
could overwhelm this effect.

Figure 5. (a)Wideband Fourier transform of Ey,trans at z 128 m= near the lower boundary of the simulation over the time range 3–10 ms and
(b) the cold plasma electromagnetic dispersion relation at the same point for waves directed along the z-axis. The frequency axis is centred on
the driver frequency. The 3 dashed red lines from left to right show the O-mode cut-off frequency, the Z-mode resonance frequency and the
input wave frequency at the measurement point.

Figure 6. Fourier transform of the downwards propagating L/O mode
signal focused within ±50 kHz of the driver wave over time range
3–10 ms at the measurement points z 128 m= and z 1498 m.=
The z 1498 m= spectrum has been shifted down by 20 dB for ease
of visualisation; with no shift the two curves align closely. To produce
the spectra E ,x,trans E ,y,trans Bx and By were Fourier-transformed in time
at the measurement points and then decomposed onto the 4 local cold
plasma modes before evaluating the power flux in the downwards L/O
mode. The higher altitude (dashed, red) spectrum is terminated at
around −15 kHz due to the local O-mode cut-off.

Figure 7. Slow timescale density perturbation nslow near the final
peak of the initial standing wave pattern, plotted at times (a) 0.5 ms
and (b) 1.5 ms, during the exponential growth phase of the
instability.
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At lower altitudes with greater mismatch between input
wave frequency and local plasma frequency the parametric-
decay instability (PDI) is dominant [24], and figures 10 and
11 show the slow density perturbation around z=920 m
where the PDI is seen to occur, but with a lower theoretical
growth rate than the modulational instability at higher alti-
tudes (a simulation growth rate was difficult to extract). The
PDI corresponds to the inner ring in figures 9(b) and 11(b)
and the outer ring is the modulational instability which in this
region has a very narrow region of unstable wavenumbers as
seen in figure 11(b). For the PDI case the density perturbation
oscillates as well as grows in time.

After some time strong Langmuir turbulence (SLT) due
to the modulational instability develops near the cut-off of the
input electromagnetic wave, with very large amplitude den-
sity depletions formed in spatially localised cavitons or
wavepackets. Figure 12 shows density perturbations repre-
sentative of SLT near the largest initial standing wave pattern
maximum. The spatial extent of the cavitons is seen to be
much larger perpendicular to the magnetic field than parallel,
and there is a tendency for ‘strings’ of wavepackets aligned
along the magnetic field to form which has been observed in
previous simulations [9]. Note that the depth of the density
depletions created exceeds the model validity (which requires
n nslow 0 ) so only qualitative details should be inferred

Figure 8. Spatial Fourier transform of the data in figure 7 at (a) time
0.5 ms and (b) time 1.5 ms during the exponential growth phase.

Figure 9. (a) Temporal growth rate of nslow extracted from the region
plotted in figure 8. The simulation growth rate was extracted by
linear regression on the growth of the logarithmic Fourier
amplitudes over the time interval 0.5–1.5 ms, with modes not having
a strong linear correlation being assigned a growth rate of 0.
(b) Theoretical growth calculated using a driver field of E 0.0200 = -˜ (
0.060i, 0.738 0.240i, 2.841 0.924i Vm ,1+ + -) J 0.10 0.03i,0 = +˜ (

0.41 1.27i, 1.65 5.06i 10 Am4 2- + - + ´ - -) and a local plasma
frequency of 3.197MHz. The calculation included the model ion
Landau damping operator and the electron collision term but not the
electron Landau damping term.

Figure 10. Slow timescale density perturbation nslow located near the
8th peak (where the 1st peak is at largest z) of the initial standing
wave pattern, plotted after the growth of electrostatic waves at
time 2.5 ms.

Figure 11. (a) Spatial Fourier transform of data in figure 10 and (b)
theoretical growth rate calculated using a driver field of E0 =˜

0.082 0.253i, 0.419 0.136i, 0.829 0.270i Vm ,1- + - - - - -( ) J0 =˜
0.350 0.114i, 0.189 0.579i, 0.481 1.475i 10 Am4 2- - - - ´ - -( )

extracted from the initial standing wave pattern near the 8th peak and
a local plasma frequency of 3.160 MHz.
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from the simulation in this region after the development of the
strong turbulence.

The temporal and spatial development of the intensity of
the turbulence is displayed in figure 13. Initially the strongest
electrostatic turbulence in the simulation is located near the
cut-off of the input electromagnetic wave, but one sees in
figure 13 that the turbulent electrostatic energy density
decreases slightly at large z and that turbulence appears at
lower altitudes as the simulation progresses. Initially the
imprint of the standing wave pattern is seen in the distribution
of the turbulence, but at later times this is smoothed out,
which may be due to the increased absorption of the driver
wave destroying the standing wave pattern or due to the
propagation of turbulence between different regions.

3.3. Simulated scatter radar spectra

Radars with frequency in the range 100MHz–1 GHz have been
employed in ionospheric heating experiments to measure the
spectrum of density perturbations excited by the separate driver
wave [25–28]. Some radars are sensitive enough to measure
scattering from the natural ionosphere allowing measurement of
electron temperature and density while others are only sensitive
enough to measure the enhanced scatter spectrum due to the
excited turbulence. The experimental methods vary but we here
consider a radar pulse launched and scattered vertically, con-
sistent with the spatial domain used in the simulation. With a
frequency much higher than the plasma frequency a radar signal
will have a well-defined spatial wavevector k cR Rw= and
we can consider backscattering off electron density fluctuations
having frequency scatw and spatial wavevector kscat =∣ ∣

c k2 2R scat Rw w »( )/ since .scat Rw w To extract a repre-
sentative spectrum from the simulation we convolve the
values of nslow and nfast with a spatial kernel k zexp 2i scat-( )

z z LHann 0-(( ) )/ where a Hann window is used to represent
localisation to different height ranges.

Figure 14 displays the spectrum extracted from the ion
timescale fluctuation n .slow The lowest height region in
figure 14(a) corresponds to a region approximately at the pri-
mary-decay ‘matching height’ of the radar where the local
plasma frequency is such that k kIA scat L UH scat 0w w w+ =-( ) ( )
[25], allowing resonant parametric decay of the heating wave
along the line of sight of the radar into oblique upper-hybrid/
Langmuir waves and ion acoustic waves with wavevectors
equal to k .scat This gives rise to distinct peaks in the return
spectrum at k C kIA scat s scatw = ( ) corresponding to scattering
off upwards and downwards propagating ion acoustic waves (or
more correctly, waves with phase velocities in the upwards and
downwards directions). In figure 14(c) a different ‘filled-in’
spectrum is seen known as the ‘caviton continuum’ where it is
understood that the SLT present at this higher altitude is asso-
ciated with a much broader spectrum. Due to the extreme
density fluctuations in the simulation in the SLT zone the
analysis of this region is questionable. Figure 14(b) shows an
intermediate altitude where the amplitude of the scattering is
lower. The scattering wavevector of 7 m ,1- corresponding to a
radar frequency of 167MHz, was chosen to make these three
regions separate for the simulation parameters used.

Figure 15 displays the spectrum extracted from the fast
timescale density fluctuation nfast˜ representing Langmuir/
upper-hybrid waves. Replacing kscat by kscat- switches
between upwards and downwards propagating waves giving
the downshifted and upshifted plasma lines. Similar to
figures 14(a) and (b), figures 15(a) and (b) display a zone near
the matching height where peaks in the scattered spectrum are
visible. Figures 15(e) and (f) display a zone with SLT and a
broad feature in the centre of the spectrum as well as the ‘free-
mode’ feature corresponding to the local upper-hybrid/
Langmuir frequency k .L UH scatw - ( ) The intermediate zone
displayed in figures 15(c) and (d) has a reduced scattering
amplitude but the free-mode feature is still visible. In our
analysis we have not considered the possibility of cascading
of Langmuir waves producing multiple resonant peaks.

4. Discussion

A computer model has been developed to study important
aspects of the propagation, reflection and absorption of pow-
erful electromagnetic waves as they interact with plasma. The
model assumes that the EM signals vary only in the vertical
direction, but that they may excite a range of small-scale elec-
trostatic plasma oscillations which are represented in two
dimensions. By representing the electromagnetic degrees of
freedom on a coarser grid than the plasma fluid degrees of
freedom a longer timestep can be taken in light of the inequality
v c,Te  allowing considerable computational speedup.

The model has been applied to consider the behaviour of
3.2 MHz EM waves with an intensity of 45 Wm 2m - polarised
in the L/O mode and propagating into cut-off at an angle of

Figure 12. Slow timescale density perturbation nslow located at the
final peak of the initial standing wave pattern, following the
development of Strong Langmuir Turbulence at time 5 ms.
(a) depicts a large spatial region covering z 1748 1772 m= – and
(b) a smaller region focused on a few density depletions.
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14° to the magnetic axis, a scenario relevant to ionospheric
heating experiments at facilities like HAARP, EISCAT and
SURA. The simulation was conducted over a range of some
1.9 km below the cut-off altitude for the incident L/O wave,
and for about 700 m above the cut-off. Initially the incident
wave experiences strong reflection and forms a standing wave
pattern with a peak field of 3 Vm 1- polarised along the
direction of the background magnetic field at the final
standing wave peak.

The wave turbulence initially develops in accordance
with parametric instability theory with growth rates in
agreement with those given by asserting the driver amplitude
based on the initial standing wave pattern and using the local
plasma density in the calculation. At high altitudes with small

detuning between the incident wave frequency and the local
plasma frequency the modulational/OTSI instability is
favoured with theoretical growth rates of order 6000 s−1 but
at lower altitudes with larger detuning the PDI is favoured.
After about 3 ms SLT develops at high altitudes from the
nonlinear phase of the modulational instability giving almost
total absorption of the incident wave. The depletion of the
input driver wave then leads to a nontrivial distribution of
turbulence in the domain which is a new development in
understanding the problem as a whole. The simulation may
need to be run for longer to obtain a quasi-steady state.

Predictions of the scatter radar spectra one might expect
from this perturbed plasma are in broad agreement with the
established picture in the literature, with peaked spectra

Figure 13. RMS electrostatic electric field amplitude at various times. A high-pass spatial filter was first applied to Ez˜ to attenuate the
electromagnetic driver wave before evaluating the local squared electric field amplitude and then averaging in the y-direction and smoothing
in z before taking the square root.
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predicted at the low altitude ‘matching height’ where waves
with wavevector equal to the scattering wavevector are
resonantly excited by the PDI. Broader spectra are predicted
at high altitudes due to SLT wavepackets with a broad
k-spectrum. For the mock radar frequency of 167MHz the
ion acoustic sidebands are peaked at a shift of 2.2 kHz.

Analysis of the returned EM signal (performed over a
3–10 ms time range) predicts a primarily downshifted spec-
trum (having width around 10 kHz for a 30 dB attenutation
with respect to the returned driver signal) which appears to be
generated at high altitudes before propagating down through
the plasma with little modification.

The still limited dimensionality in the simulation may
hide certain effects involving the three-dimensional nature of
collapsing wavepackets in SLT. The restriction to electro-
magnetic wave propagation parallel to the background density
gradient only allows vertical incidence to be considered and
additional effects involving the input electromagnetic beam
size might be revealed with a more comprehensive treatment.
Strictly speaking the input wave does not ‘propagate’ in the
z-direction as its group velocity is directed in a slightly
different direction to its phase velocity which is in the
z-direction, but we have ignored this distinction when dis-
cussing the 1D electromagnetic model.

Computationally, a patching scheme might be useful
when large regions of statistically homogeneous turbulence
are created. In such a scheme an anomalous resistivity could
be calculated from local simulations of electrostatic turbu-
lence and applied to a global electromagnetic model.

Usually with Zakharov-type simulations a manipulation
and approximation is made (neglecting t2 2¶ ¶ compared with

ti 0w- ¶ ¶ ) such that each wave mode is represented by just
one complex field [9, 10], but in this work every real field has
simply been replaced by a complex one on the fast timescale
(additionally 4 variables Jx y z, ,˜ and nfast˜ are used on the fast
timescale while a reduced model might require fewer). One
advantage of using separate high and low frequency systems is
that the electron response can be modelled differently for each.
Complex envelope representations can also be useful if they
allow longer timesteps to be taken [29], but here this has not
been implemented. For the timestep of 8 ns used there are 39
timesteps per wave period which would be sufficient to resolve
the waves in full. The timestep is dictated by the electro-
magnetic Courant stability limit on the coarse grid and the
electron Landau damping operator. If implicit schemes were
used [16, 29] then it should be possible to eliminate the need for
the nested grid method (with the cost of extra storage of field
variables on the fine grid and the implicit solves).

Figure 14. Ion acoustic scatter radar spectra derived from time history of nslow averaged over y-direction. The time interval analysed was
3–10 ms and the spatial windows were 200 m in length; the central z value is displayed above each plot. The values plotted are

n klog , .10 slow scatw∣ ( )∣ Hann windows were applied in space and time before performing the Fourier transforms; in space the net operation is
multiplication by a function k z z zexp i Hann .scat 0- -( ) ( ) The negative frequencies correspond to waves with phase velocity in the negative
direction (upshifted radar frequency) and positive frequencies to waves with phase velocity in the positive z-direction (downshifted radar).
The red lines are plotted at C kIA s scatw =  and are the theoretical ion acoustic dispersion.
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The simplicity of the plasma model used is a major
drawback, with no consideration for modification of the
electron distribution function by wave-particle interactions, or
higher order nonlinearities present in deep density depletions.
The correct form of the dissipation and/or extra nonlinear
effects required to resolve the collapsing density depletions
has not been investigated in this work. Previous work [8, 10]
has emphasised the importance of transit-time damping of
localised coherent electrostatic wave structures instead of
ordinary random-phase Landau damping. It would perhaps be
more reasonable to restrict the simulation method to smaller
input amplitudes to avoid the extreme nonlinearities gener-
ated in the SLT zone.

Additionally, the combined effect of the magnetic field
and plasma kinetic behaviour is not considered, with Landau

damping obliquely to the magnetic field being modelled in the
same fashion as in the parallel direction. Similarly the ion
response would benefit from a more detailed model.

5. Conclusion

The two-dimensional simulation presented shows the excita-
tion of Langmuir turbulence by an electromagnetic driver
wave injected from the bottom side. The simulation para-
meters are representative of ionospheric heating experiments
and results of electromagnetic emissions and radar scattering
agree with theoretical expectations. The two-dimensional
model allows for excitation of electrostatic waves in direc-
tions other than the background density gradient. By

Figure 15. Langmuir/upper-hybrid scatter radar spectra derived from time history of nfast˜ averaged over the y-direction. The time interval
analysed was 3–10 ms and the spatial windows were 200 m in length; the central z value is displayed above each plot. The left hand column
shows analysis performed for k 7 mscat

1= - - (downwards phase velocity; upshifted radar) and the right for k 7 mscat
1= - (upwards phase

velocity; downshifted radar). The values plotted are n klog , .10 fast scatw∣ ( )∣ The red lines are plotted at the theoretical kUH L scatw - ( ) dispersion
for plasma frequencies at the minimum, middle and maximum z-values in the 200 m windows, and the black lines are the corresponding
plasma frequency values. The zero of the frequency axis is set to the input wave frequency, such that the scattered radar frequency would be

f’ 2R R 0w w w p= + + D( ) for k 7 mscat
1= - - and f’ 2R R 0w w w p= - + D( ) for k 7 m .scat

1= -
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simulating both electromagnetic waves and electrostatic
waves simultaneously it is possible to obtain a more complete
and self-consistent description. One expects this method to be
most relevant at high driver powers when the turbulence is
sufficiently intense to interact nontrivially with the driver
wave as seen in figures 2 and 13. By varying such parameters
as the input wave strength, the magnetic field angle and the
plasma density gradient it could be possible to explore a range
of different effects and perhaps adapt the method to other
problems where a large-scale driver transfers energy to much
shorter scale turbulence as well as to lower-hybrid turbulence
at large angles to the magnetic field lines.
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Appendix A. Timestepping scheme

A low storage splitting scheme is employed where the vari-
ables:

E E FB FB, , , , n , n , nx y x ytrans, trans, fast slow slow
~ ~ ˜ ˜ ˜

are considered to be stored at integer timesteps
t t t, , ,n n n1 2¼+ + while the variables:

JB B FE FE, , , ,x y x y
~ ~˜ ˜ ˜

are considered to be stored at half-integer timesteps
t t t, , ,n n n1 2 3 2 5 2¼+ + +/ / / and the two sets of variables are
updated separately using the values of variables in the other
system to compute derivatives in a leapfrog fashion.

Where possible, centred-in-time derivatives are used to
advance the simulation variables. This sometimes requires
locally implicit updates as in:
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which can be written as:
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for the update of n .fast˜ The PML auxiliary variables can be
updated before the field variables which require them to
achieve a convenient scheme.

To update the current densities from tn 1 2+ / to t ,n 3 2+ / a
secondary time splitting method is applied, where Jx̃ is first
updated by one half-timestep from tn 1 2+ / to t ,n 1+ then Jỹ and
Jz̃ are updated from tn 1 2+ / to tn 3 2+ / before updating Jx̃ from
tn 1+ to t .n 3 2+ / In this manner the magnetic field gyration
terms can be applied in a centred (on average) fashion without
an awkward matrix inversion which would be complicated by
the spatial staggering of J .z̃ A similar procedure is applied to
update the slow variables from tn to tn 1+ where nslow is
updated in two half timesteps and nslow in a full timestep.

The dissipative Landau damping and collision terms are
evaluated at the current time level where required, giving only
a first order in time discretisation.

Appendix B. Numerical landau damping operators

Historically numerical Landau damping operators have been
applied as multiplications in Fourier space [9]. In this work
the solution is available in y-Fourier space but in the
z-direction a different approach is required. An ad hoc scheme
has been developed where an operator F k F k*= -( ) ( )
defined in z-Fourier space is applied on a grid in real z-space
using a finite difference scheme as:
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where it is assumed that the operator is symmetric about k=0,
and 2N−1 is the number of points included in the stencil. To
determine the stencil coefficients ja the cost function C:
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representing the error in the Fourier approximation in wave-
number space is minimised with respect to .ja In practice H k( )
corresponds simply to a Fourier cosine series taken over the
range of wavenumbers represented on the simulation grid. For
both the ion and electron Landau damping operators N=41 is
used in the finite difference stencil.

The ion Landau damping operator is written as:
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such that the main task is of approximating the operator k .∣ ∣
Equation (B.5) does not follow from equation (B.4) which is
only valid for T Te i whereas equation (B.5), which was
used in the simulation, is consistent with previous work [9].
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Figure B1 shows the numerical approximation, where it is
seen in part (b) that the approximation breaks down for suf-
ficiently small k .z

The electron Landau damping operator is approximated as:
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for k 0.05Del <∣ ∣ as presented in [30], while for
k 0.05Del >∣ ∣ the dispersion relation for unmagnetized Lang-
muir waves:
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is solved and k kImeLn w= -( ) ( ( )) is then used. To avoid
negative values the square root of the operator is first
approximated using a stencil of size N=21 and then the
resulting operator is squared to obtain a stencil with N=41.
Furthermore, when performing the least-squares fit a constraint
was applied to force the numerical operator to be exact at
k 0z = in order to avoid a problem with a spurious numerical
collision frequency being generated.

In addition to avoid extreme density depletions being
generated in the simulation additional dissipation was added

in the form given by equation (B.10) with A= 1.25 and
k 0.125 .cut Del= Figure B2 shows the operator obtained in
this manner.
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It is known that the ion response obtained in this manner
has limitations [21], and the effect of the magnetic field on the
electron Landau damping operator has been ignored. More
seriously however it is seen in figure B2 that the extra
damping added to the electron Landau damping operator
dominates over the thermal part. The numerical damping
operator therefore only qualitatively represents the physically
expected high k cut-off given by electron Landau damping
and as mentioned earlier it does not capture the true form of
the dissipation of collapsing wavepackets.

Fitting over the entire sampled k-space interval up to the
Nyquist wavenumber with uniform weighting is unlikely to
be an optimal strategy, and the stencils with N= 41 are
computationally expensive to evaluate. It is necessary to use a
large number of points to ensure that the numerical damping
added at small k is not excessive as displayed in figure B2(b).
The method involves Fourier analysis of functions with dis-
continuities which is a questionable procedure. When evalu-
ating the convolutions, boundaries in the simulation are
treated by padding with zeros.

Figure B1. Numerical approximation of k∣ ∣ operator for z 0.025 m,D = N=41 and k 0,y = displayed over the full range of simulated
wavenumbers (a) and the long wavelength region (b).
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Appendix C. Growth rate calculation

For the purpose of growth rate computation (required in
figures 9(b) and 11(b)) the plasma state is expanded about the
background as in equations (C.1)–(5)) where the driver wave
is assumed to have an infinite wavelength with electric field
amplitude E0˜ and current density J0̃ (although only the cur-
rent density is required for the method used here).
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The slow timescale part is assumed to have angular fre-
quency ω and spatial wavevector k, giving rise to upshifted
(+) and downshifted (−) high frequency waves. A purely
electrostatic model is assumed as in equation (C.6) such that
the perturbation electric field may be eliminated in favour of
n .fast,˜
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Figure B2. Numerical approximation of Electron Landau damping operator with and without enhancement at high k for z 0.025 mD = and
N=41, with 1 100 mDe

1l = - and k 0.y = (a) Displays the full range of simulated wavenumbers and (b) the long wavelength region.
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The model is otherwise the same as in section 2, and
equations (C.7)–(12) give the time evolution of the model
variables in the frequency domain. By writing the system in
this manner we obtain a dimension-10 matrix eigenvalue
problem with eigenvalues i i Rw g w- = - and eigenvectors
formed by the variables n ,fast,˜ J ,̃ nslow˜ and n .slow The
solution of this problem gives 10 wave modes, some of which
are spurious with zero frequency, and the growth rates dis-
played in section 3.2 are extracted as the mode with the
maximum value of growth rate γ.
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