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We propose that pressure anisotropy causes weakly collisional turbulent plasmas to
self-organize so as to resist changes in magnetic-field strength. We term this effect
‘magneto-immutability’ by analogy with incompressibility (resistance to changes in
pressure). The effect is important when the pressure anisotropy becomes comparable
to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high-β)
plasmas its dynamical relevance is similar to that of incompressibility. Simulations
of magnetized turbulence using the weakly collisional Braginskii model show that
magneto-immutable turbulence is surprisingly similar, in most statistical measures, to
critically balanced magnetohydrodynamic turbulence. However, in order to minimize
magnetic-field variation, the flow direction becomes more constrained than in
magnetohydrodynamics, and the turbulence is more strongly dominated by magnetic
energy (a non-zero ‘residual energy’). These effects represent key differences between
pressure-anisotropic and fluid turbulence, and should be observable in the β & 1
turbulent solar wind.
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1. Introduction
Many magnetized astrophysical plasmas – for example, the solar wind and the

intracluster medium of galaxy clusters – are turbulent and weakly collisional, with
particle mean free paths that are comparable to, or exceed, the scales of plasma
motions. Despite this scale hierarchy, it is broadly assumed that such plasmas can
be described by single-fluid magnetohydrodynamics (MHD), at least on scales much
larger than the plasma’s kinetic microscales (e.g. the ion gyroradius ρi or skin depth).
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Indeed, there are certain situations in which this simplification can be justified
rigorously (e.g. Kulsrud 1983; Schekochihin et al. 2009). In this work, we show
that there exists a significant dynamical effect in weakly collisional plasmas that
is not captured by the MHD model. It affects plasmas whose thermal energies are
comparable to their magnetic energy, β ≡ 8πp0/B2 & 1 (where p0 is the thermal
pressure and B = |B| is the magnetic-field strength). This effect, which we call
‘magneto-immutability’, is the tendency of the plasma motions to self-organize so as
to resist changes in magnetic-field strength.

Magneto-immutability arises from the dynamical effects of pressure anisotropy,

1p≡ p⊥ − p‖, (1.1)

which is the difference between the thermal pressures perpendicular (⊥) and parallel
(‖) to the magnetic field. Pressure anisotropy is generated locally whenever and
wherever B changes slowly in a plasma with the ion-collision frequency νc much
smaller than the gyrofrequency Ωi (Chew, Goldberger & Low 1956; while the same
is true for electrons, ion microphysical parameters are most relevant for the effects
studied here). Although pressure anisotropy is well studied in solar-wind plasmas
(Kasper, Lazarus & Gary 2002; Bale et al. 2009), most authors have focused on
microscale kinetic instabilities that are excited if |1p| becomes too large, rather
than on the dynamical feedback of 1p on the large-scale motions (but see Helander,
Strumik & Schekochihin 2016; Squire, Quataert & Schekochihin 2016; Squire et al.
2017a; Yang et al. 2017). The latter is the focus of this work.

The dynamical effects of pressure anisotropy that lead to magneto-immutability
are best described by analogy with the more familiar concept of incompressibility.
Just as density fluctuations are minimized by the pressure force (−∇p) because
it drives flows away from compressions, magnetic-field-strength fluctuations are
minimized by the pressure-anisotropy force ∇ · (b̂b̂1p), which drives field-aligned
flows towards or away from large-magnitude ‘magneto-dilations’, i.e. fluctuations for
which b̂b̂ : ∇u ≡ b̂ · (b̂ · ∇u) 6= 0 (where b̂ is the unit vector in the direction of the
magnetic field). A flow becomes incompressible when the time scales associated with
compressive motions are short compared to other motions of the plasma. Likewise,
a flow is magneto-immutable when dynamically large pressure anisotropies develop
quickly compared to other important time scales (e.g. the Alfvén period). It is widely
appreciated in plasma physics that weakly collisional plasmas cannot support motions
that involve a linear perturbation to B (e.g. slow waves), either due to viscous or
collisionless damping (Barnes 1966). Our contribution in this work is to suggest that
such ideas apply equally well to nonlinear motions in a turbulent environment, viz.,
that the resistance to changes in B operates as a general self-organization principle
for kinetic plasmas.

Magneto-immutability can be important whenever 1p generated by plasma
motions approaches B2. In this article, we focus on its relevance to Alfvénic
turbulence, which is important in a wide range of space and astrophysical plasmas.
Magneto-immutability occurs for turbulence amplitudes δB⊥/B approaching the
‘interruption limit’ (see § 1.1 below), above which linearly polarized shear Alfvén
waves do not propagate (Squire et al. 2016; Squire, Schekochihin & Quataert
2017b). This implies that weakly collisional plasmas, our focus in this work, are
approximately magneto-immutable for β & νc/ω > 1 (for trans-Alfvénic motions with
δB⊥ ∼ B), where ω is the characteristic frequency of the motion. In contrast, for
collisionless plasmas such as the solar wind, magneto-immutability likely plays a role
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in turbulent self-organization for β approaching or exceeding ∼1 (for trans-Alfvénic
turbulence), and should be of similar dynamical importance to incompressibility.
Intriguingly, a variety of in situ observations of the turbulent solar wind have found
that the magnetic field preferentially oscillates in such a way that B remains nearly
constant (Lichtenstein & Sonett 1980; Tsurutani et al. 1994; Bruno et al. 2001), a
phenomenon often referred to as ‘spherical polarization’ (Vasquez & Hollweg 1998).
While these observations provide suggestive evidence that our theory may be relevant
in the collisionless solar wind, other explanations for spherical polarization do exist
(e.g. Barnes & Hollweg 1974; Borovsky 2008; Tenerani & Velli 2018) and further
work is needed to make more detailed falsifiable predictions in the collisionless
regime.

Following a brief review of the physics of shear-Alfvén-wave interruption in § 1.1,
the remainder of this paper has two main parts. First, in § 2, we argue heuristically
for the importance of magneto-immutability, relying heavily on parallels between
pressure anisotropy and compressional motions. Second, in § 3, we present a set
of Alfvénic-turbulence simulations using the weakly collisional Braginskii MHD
model, the simplest model that contains the necessary physics. These two parts
are interdependent: the simulations validate some of the key ideas and assumptions
used in the physical discussion, also showing the ways in which magneto-immutable
turbulence is nonetheless similar to standard Alfvénic turbulence. The arguments
in § 2 suggest that magneto-immutability applies more generally to weakly collisional
turbulence, not being limited to the regime of validity of the specific model (viz.,
Braginskii MHD) employed in our simulations.

1.1. Interruption of Alfvénic perturbations
A common concept discussed throughout this work is that of ‘interruption’ of Alfvénic
fluctuations, first introduced in Squire et al. (2016). It is helpful to review briefly
the physics of interruption here, both for the convenience of the reader and in
order to highlight the surprising nature of some of our findings. Interruption is a
nonlinear effect that occurs when the change in the magnetic-field strength in an
oscillating, linearly polarized shear Alfvén wave is sufficiently large to cause the
pressure anisotropy to reach the parallel firehose threshold, 1p = −B2/4π. This is
achieved for wave amplitudes δB⊥/B0 exceeding the ‘interruption limit’

δbint ≡


2β−1/2, νc <ωA (collisionless),

2β−1/2

(
νc

ωA

)1/2

, νc >ωA (weakly collisional),
(1.2)

where ωA= k‖vA is the Alfvén frequency. The limit is particularly relevant because if
1p reaches the firehose threshold, then the magnetic tension, which is the restoring
force for shear Alfvén waves, is nullified. The wave thus stops oscillating – i.e. it is
‘interrupted’. This implies that plasmas cannot support linearly polarized shear Alfvén
waves above the amplitude (1.2). Although the detailed dynamics of interrupted
waves (i.e. fluctuations with δB⊥/B0 & δbint) differs between the collisionless and
weakly collisional regimes (Squire et al. 2017b) and depends on microinstabilities
(Squire et al. 2017a), the waves always become strongly magnetically dominated,
with 〈B2

〉 � 〈u2
〉 and δu⊥/vA . δbint. In the weakly collisional regime, the focus

of our study here, the magnetic field of an interrupted shear Alfvén wave decays
to below the interruption limit (1.2) over the time scale tdecay ∼ δb2

0 β/νc, while the
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(a) (b)

FIGURE 1. Interruption of linearly polarized shear Alfvén waves in the Braginskii
MHD model, which is used for the turbulence simulations presented in § 3. Here we
show results from simulations in one dimension, starting from a perpendicular magnetic
perturbation δB⊥/B0= 1 [By=−B0 cos(2πx)] with background magnetic field B0=B0x̂. In
standard MHD, these initial conditions lead to standing-wave oscillations with period τA.
(a) Snapshots of the perpendicular velocity uy(x)/vA (solid lines) and perpendicular
magnetic field By(x)/B0 (dashed lines) for δbint= 1/4 (Braginskii viscosity µBrag≡ ν

−1
c p0=

6; see § 2.2). We show snapshots at t = 0 (red lines), t = 0.3τA (black lines) and t = τA
(blue lines). (b) Time evolution of kinetic energy (EK , solid lines) and magnetic energy
(EM , dashed lines) at different δbint as labelled, from δbint = 1 to δbint = 1/8 (the black
curves show the full time evolution of the wave in a). When the Braginskii viscosity is
sufficiently large so that δB⊥/B0 & δbint, the system no longer supports shear Alfvénic
oscillations; perturbations simply decay with EM � EK until they can oscillate freely at
amplitudes below δbint.

velocity perturbation remains very small (here δb0 is the initial magnetic perturbation
amplitude; see Squire et al. 2017b). In figure 1, we show some examples of wave
interruption in the weakly collisional Braginskii MHD model (see § 2.2) at parameters
chosen to match those of the turbulence simulations presented in § 3 (δbint from 1/8
to 1, with initial perturbation amplitudes δB⊥/B0 = 1). Note that for propagating or
standing circularly polarized shear Alfvén waves, the magnetic field remains constant
in time, so the interruption limit does not apply.

Our study here is designed to examine the influence of wave interruption on
Alfvénic turbulence. The now-standard ‘critical balance’ paradigm (Goldreich &
Sridhar 1995, 1997) posits that linear (shear-Alfvén-wave) and nonlinear time scales
are comparable at all spatial scales in MHD turbulence. An immediate corollary is
that if wave time scales are significantly modified due to wave interruption (which
can occur at low amplitudes for β � 1), then the turbulent cascade should also be
strongly modified. Further, in the weakly collisional regime, δbint ∝ ω

−1/2
A ∝ k−1/2

‖

has the same scaling as critically balanced fluctuations (δu⊥ ∝ k−1/2
‖ ), suggesting that

interruption effects should be important at all scales if they are important at the
outer scale. Alternatively, one could state that, for outer-scale fluctuation amplitudes
δu⊥/vA∼ δB⊥/B0 & δbint, pressure anisotropy is expected to be a stronger nonlinearity
than the usual MHD nonlinearities across all scales of the turbulent cascade. This
nonlinearity inhibits the oscillation of Alfvénic fluctuations (see figure 1), which seems
to suggest that turbulence may not be possible for fluctuation amplitudes that exceed
the interruption limit. This prediction is borne out in one dimension: stochastically
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driving linearly polarized shear Alfvén waves, one finds that the amplitude of velocity
fluctuations is limited by (1.2). Likewise, in figure 1, we see that the kinetic energy of
decaying shear Alfvénic perturbations is very small for δbint . 1/2. However, we will
show in what follows that three-dimensional turbulence changes its characteristics to
avoid this scenario, becoming ‘magneto-immutable’, while still supporting a turbulent
cascade.

2. Magneto-immutable Alfvénic turbulence
Our starting point is the set of MHD equations with a pressure-anisotropy stress in

the momentum equation:

ρ
D
Dt

u=−∇
(

p⊥ +
B2

8π

)
+

1
4π

B · ∇B+∇ · (b̂b̂1p), (2.1)

D
Dt

B=B · ∇u−B∇ · u, (2.2)

D
Dt
1p= (p⊥ + 2p‖)b̂b̂ : ∇u+ (p‖ − 2p⊥)∇ · u+Q(q⊥, q‖)− 3νc1p. (2.3)

Here ρ is the mass density, u is the flow velocity, B is the magnetic field,
D/Dt ≡ ∂/∂t + u · ∇ is the convective derivative and Q(q⊥, q‖) parameterizes the
effects of heat fluxes (see, e.g. Chew et al. 1956, Snyder, Hammett & Dorland 1997,
Sulem & Passot 2015, Squire et al. 2017b for explicit reference to the equations
for p⊥ and p‖ individually, and for discussion of Q(q⊥, q‖)). The Alfvén speed is
vA ≡ B/

√
4πρ. Throughout this work, we consider only subsonic dynamics with

∇ · u ≈ 0. Equations (2.1)–(2.3) may be derived directly from the kinetic equations
(Kulsrud 1983; Schekochihin et al. 2010) by assuming collisional (or cold) electrons
and using the gyrotropy of the ion distribution on scales much larger than the
gyroradius. They provide the simplest well-justified model for plasma dynamics on
scales much larger than ρi.

2.1. Magneto-immutability and incompressibility
Although a complete solution to (2.1)–(2.3) requires specifying Q(q⊥, q‖) with a
kinetic solution or closure, let us proceed for the moment without doing so. We draw
analogies between the pressure-anisotropy force and the more familiar ∇p force. In
all fluid-like equations of state, pressure is coupled to flow divergences: it increases
in compressions (∇ · u = δrs∇sur = −D ln ρ/Dt < 0) and decreases in rarefactions
(∇ · u> 0). The pressure force (−∇p) isotropically drives the flow away from regions
of large p, thus pushing fluid away from compressions and towards rarefactions. This
naturally leads to incompressibility, when pressure forces dominate over others in the
system, rapidly eliminating compressional motions.

Similar ideas apply to pressure anisotropy and magneto-immutability. From (2.3),
we see that pressure anisotropy is driven by ‘magneto-dilations’, where b̂b̂ : ∇u =
b̂sb̂r∇sur =D ln B/Dt+∇ · u 6= 0. The pressure-anisotropy stress in (2.1) has the form
∇ · (b̂b̂1p)=∇r(b̂ib̂r1p), and is akin to an anisotropic version of −∇p=−∇r(δirp):
it is a force that acts in a direction nearly aligned with b̂ (so long as b̂ does not
vary significantly in space), and arises due to variations in 1p along the b̂ direction.1

1For example, if the field is straight b̂= x̂, then ∇ · (b̂b̂1p)= (∂x1p)x̂.
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We thus expect that the pressure-anisotropy stress will drive field-aligned flows that
minimize b̂b̂ : ∇u≈ D ln B/Dt. Such a flow will resist changes in the magnetic-field
strength; i.e. it will approach ‘magneto-immutability’.

Note that there is no requirement that incompressibility and magneto-immutability
act separately. Indeed, for trans-Alfvénic (δB⊥ ∼ B) turbulence in a collisionless
plasma, both effects can be of the same order. In this case, it will be important to
consider the combined impact of compressions and magneto-dilations, as opposed to
each separately, and there may be interesting self-organization principles that apply to
combinations of B and ρ. However, in this work, our focus on the weakly collisional
model implies that magneto-immutability is subdominant to incompressibility (see
next section). We thus consider the two effects separately, leaving speculation about
their interaction in collisionless plasma turbulence to future work.

2.2. Alfvénic turbulence with Braginskii viscosity
Although the arguments in the preceding paragraphs are quite general, we focus here
on applying them to strong, Alfvénic turbulence (Goldreich & Sridhar 1995) in the
weakly collisional limit. We define the turbulence amplitude δbturb≡ δB⊥/B0∼ δu⊥/vA
and the Alfvén frequency ωA = k‖vA (where k−1

‖ ∼ l‖ is the field-parallel scale of a
given fluctuation, and k−1

⊥ is its perpendicular scale). We assume that β � νc/ωA�

β1/2
� 1 (or, equivalently, β−1/2

� k‖λmfp � 1), so that the ion-collision time scale
ν−1

c is longer than all other time scales, including those associated with Q(q⊥, q‖)
(Mikhailovskii & Tsypin 1971; Squire et al. 2017b). The result is a closure for 1p
in which 1p is smaller than the variation in p⊥ or p‖ individually. Equation (2.3)
becomes

1p≈
p0

νc
b̂b̂ : ∇u, (2.4)

where 1p � p⊥ ' p‖ ' p0 (Braginskii 1965). Because β � 1, the flow is nearly
incompressible and p0 ' const. in (2.4). The pressure-anisotropy stress then takes the
form of a field-aligned viscous stress µBrag∇ · [b̂b̂(b̂b̂ : ∇u)], where µBrag ≡ ν

−1
c p0

is the Braginskii viscosity. This model is thus often called ‘Braginskii MHD’. As
discussed in § 1.1, intuitively, we expect a strong modification of the turbulence for
amplitudes above which shear Alfvén waves are interrupted and cannot propagate:
δbturb & δbint≡ 2β−1/2√νc/ωA. Note that, because νc�ωA, a weakly collisional plasma
with fluctuations that satisfy δbturb & δbint necessarily also has β � 1, justifying our
use of an incompressible model in § 3 below.

Because 1p ∝ b̂b̂ : ∇u, the Braginskii viscous stress acts in the direction required
to make the flow magneto-immutable. The fact that it irreversibly dissipates kinetic
energy (unlike, for example, the pressure force −∇p) is not important for our
arguments here. A direct analogy for compressional motions is the bulk viscosity,
which has the form −µbulk∇(∇ · u) and damps compression and rarefaction of
the flow. Interestingly, flows with large bulk viscosities (which are not commonly
studied) are effectively incompressible even when the Mach number based on the
thermal pressure is large (Pan & Johnsen 2017).

By analogy with the Reynolds number – which is the ratio of viscous to inertial
time scales, viz., Re = ρδu⊥l⊥/µiso ∼ ρvAl‖/µiso in MHD turbulence (with isotropic
dynamic viscosity µiso) – we define the Braginskii ‘interruption number’ ItBrag. ItBrag
is the ratio of the time scale for the parallel viscous stress to act on an Alfvénically
polarized motion,2 tint ∼ ω

−1
A δb2

int/δb
2
turb (see Squire et al. 2017b), and the inertial

2Equivalently, this is the time scale for |1p| to change by ∼B2 in an Alfvénic motion.
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time scale, tinertial ∼ (k⊥δu⊥)−1
∼ (k‖vA)

−1 (assuming critically balanced turbulence;
Goldreich & Sridhar 1995, 1997), giving

ItBrag ≡
tint

tinertial
≈
δb2

int

δb2
turb
∼
ρvAl‖
µBrag

(
δB2
⊥

B2
0

)−1

. (2.5)

The Braginskii stress will be dynamically important, i.e. comparable to the Maxwell
and Reynolds stresses, B · ∇B and u · ∇u, for ItBrag . 1, or equivalently δbturb & δbint.
As discussed above, when µBrag is so large that ItBrag .1, motions become increasingly
magneto-immutable, limiting 1p fluctuations to 1p∼ B2, in order to balance B · ∇B.
Thus, when ItBrag� 1, keeping the amplitudes of u and B fluctuations approximately
constant and changing µBrag, we expect (b̂b̂ : ∇u)rms ∝ ItBrag, or 1prms ∼ const., as
opposed to the naive scaling, (b̂b̂ : ∇u)rms ∼ const., or 1prms ∝ It−1

Brag, which holds
at ItBrag � 1 when pressure-anisotropy forces play no role (here, Arms denotes the
root-mean-squared fluctuation level of the variable A). Note that in realistic plasmas,
where microinstabilities can break the direct proportionality between b̂b̂ : ∇u and
1p (see § 2.3 below), these scalings hold only in regions that are not affected by
microinstabilities.3

2.3. Microinstabilities
Sufficiently non-Maxwellian distribution functions are unstable to kinetic plasma
instabilities, complicating the arguments above and breaking the correspondence
between compression/rarefaction and magneto-dilation. In the high-β regime, the
most relevant microinstabilities are the firehose (Rosenbluth 1956) and mirror (Barnes
1966; Hasegawa 1969), which are triggered when 1p . −B2/4π and 1p & B2/8π,
respectively. These instabilities act to deplete the amount of large-scale 1p in excess
of the stability thresholds (|1p|. B2/4π; Hellinger & Trávníček 2008; Schekochihin
et al. 2008; Kunz, Schekochihin & Stone 2014; Melville, Schekochihin & Kunz
2016), which they achieve over short time scales set by Ωi. They may thus frustrate
the plasma’s attempts to become magneto-immutable by truncating the growth of
1p when it becomes too large. There is no analogue to this effect in (collisional)
compressible hydrodynamic flows, which are generally not strongly affected by kinetic
instabilities because large variations in isotropic pressure can occur even when ν−1

c
is small compared to all other time scales (unlike 1p, which is always negligibly
small at sufficiently small ν−1

c ). Nonetheless, we argue, and show explicitly below
(figure 4), that magneto-immutability remains an important self-organizing principle,
even if mirror and firehose perfectly limit 1p (i.e. −B2/4π61p6B2/8π). The reason
is that the two effects, microinstabilities and magneto-immutability, scale in identical
ways: they are both important only once 1p ∼ B2, implying that the limiting effect
of microinstabilities does not dominate over magneto-immutability, or vice versa.

3. Braginskii MHD simulations
We now supplement the heuristic arguments proposed above by numerical

simulations of Alfvénic turbulence. We use incompressible Braginskii MHD ((2.1)–
(2.2) with 1p given by (2.4)) because it is the simplest model that captures

3For example, in our simulations reported below that use a mirror limiter, we measure 1p<0
rms ≡

〈1p2
|1p<0〉

1/2 to exclude mirror-limited regions; see § 3.2.
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the pressure-anisotropy effects of interest, allowing comparatively straightforward
diagnosis of the key physics. The results of these simulations demonstrate three key
points: (i) that magneto-immutable turbulence with ItBrag . 1 (δbturb & δbint) is possible
and similar to standard critically balanced Alfvénic MHD turbulence (although some
key differences do exist); (ii) that the pressure-anisotropy stress does indeed act
to minimize b̂b̂ : ∇u; and (iii) that the system approaches a well-defined non-zero
turbulent state in the ItBrag → 0 limit, similarly to the way in which hydrodynamic
turbulence approaches incompressibility in the low-Mach-number limit.

3.1. Numerics
Our simulations use the SNOOPY code (Lesur & Longaretti 2007), which is based
on a Fourier pseudo-spectral discretization in space. The pressure anisotropy 1p is
calculated from (2.4), with sub-cycling of the final term in (2.1) eight times per
global MHD time step. The effect of microinstabilities is modelled by limiting the
value of 1p (Sharma et al. 2006), viz., 1p = min(µBragb̂b̂ : ∇u, B2/8π) (mirror) or
1p = max(µBragb̂b̂ : ∇u, −B2/4π) (firehose). Because the parallel firehose instability
is captured by the Braginskii MHD model but the mirror instability is not, most
simulations use only a mirror limiter. This choice also helps us to isolate the effects
of magneto-immutability from those of the limiter, because 1p freely evolves in
regions where 1p < 0. However, we acknowledge that some crucial aspects of the
true kinetic firehose instability – in particular, pitch-angle scattering of particles from
ion-Larmor-scale fluctuations – are not captured by Braginskii MHD. For this reason,
we also run some turbulence simulations with both a mirror and a firehose limiter,
which show similar qualitative behaviours to those with just a mirror limiter. We use
periodic boundary conditions in a three-dimensional box threaded by a uniform mean
magnetic field B0 = B0x̂. In all cases, Ly/Lz = 1, whereas Lx/Lz is varied depending
upon the amplitude of the turbulent fluctuations. The latter are driven by forcing all
modes of the velocity field up to (|kx| = 2× 2π/Lx, |ky| = 2× 2π/Ly, |kz| = 2× 2π/Lz)
using an Orstein–Uhlenbeck process with correlation time ∼τA≡Lx/vA. The amplitude
of the driving is chosen such that δbturb ≡ δB⊥/B0 ∼ δu⊥/vA ∼ Ly/Lx = Lz/Lx; i.e. we
drive turbulence in critical balance, k‖vA ∼ k⊥u⊥ (Goldreich & Sridhar 1995). We
present results for both trans-Alfvénic turbulence, with Lx = Lz (δbturb ≈ 1), and
sub-Alfvénic turbulence in a box that is elongated along the mean-field direction,
with Lx = 4Lz (δbturb ≈ 1/4). We use fourth-order isotropic hyper-dissipation in
u and B (µiso,4∇

4u and η4∇
4B), which was chosen, after extensive testing with

MHD simulations, because it gave the cleanest inertial range at a given resolution.
Simulations are run until t= 4τA and results are averaged over the final 2τA.

We change the relative importance of the pressure-anisotropy stress by varying
µBrag at constant forcing amplitude and constant B0. As explained in § 2, we
expect pressure anisotropy to be important when ItBrag . 1, or equivalently for
µBrag & π−1ρvAL3

x/L
2
z (see (2.5)). Unfortunately, such a large µBrag requires very

short time steps. Consequently, simulations at small ItBrag are vastly more expensive
computationally than their MHD counterparts, and our highest resolutions are rather
modest: Nx = Ny = Nz = Nx,y,z = 192. Although other numerical methods may enable
increased resolution in future work, great care must be taken: due to the large values
of µBrag, very small errors in evaluating b̂b̂ : ∇u can spuriously damp legitimate
motions. We chose the pseudo-spectral method after extensive tests of decaying
turbulence with ItBrag > 1 but large µBrag, using a variety of different numerical
methods. In particular, unexpected problems arose in evaluating the Braginskii stress
using finite-volume, operator-split methods.
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FIGURE 2. The effect of pressure-anisotropy stress on the flow structure. In each panel,
the colour scale on each slice shows uy (perpendicular to B0), while the lines follow the
streamlines of the incompressible flow (the colour shows the length of a streamline from
its origin, to more clearly show the different flow structures in each case). We compare
MHD and ItBrag= 1 flows, driven with identical forcing fields from zero initial conditions.
The pair of panels on the left is for t= τA/4= 0.25Lx/vA, at which point the flow has not
yet become fully turbulent, while the panels on the right show turbulent flow structures at
t= 5τA = 5Lx/vA. In both cases, the effect of magneto-immutability is clearly seen in the
flow lines, which become more tightly curled so that the flow has the direction required
to avoid changes in B. This is a nonlinear analogue of a circularly polarized Alfvén wave.

3.2. Results
To illustrate a magneto-immutable flow, in figure 2 we compare the flow streamlines
at early times using ItBrag ≈ 1 Braginskii MHD with those obtained using standard
MHD. Although the magnitude of the velocity in each case is similar, the magneto-
immutable flow has manifestly different structure: plasma is constrained to flow along
the direction that minimizes changes in B. The dynamics illustrated in figure 2 may be
thought of as a nonlinear generalization of a circularly polarized linear Alfvén wave,
which does not change the strength of B.

We now describe the key findings of our turbulence simulations (illustrated in
figures 3–6) and how these add to the discussion of § 2.

3.2.1. Turbulence is possible and Alfvénic in character
As discussed in § 1.1, it is not obvious that turbulent motions can be supported

at all when δbturb & δbint (ItBrag . 1), because isolated linearly polarized Alfvénic
fluctuations cannot propagate (even with mirror and/or firehose limiters; Squire et al.
2016). Our first result, illustrated in figure 3, is that Braginskii MHD can sustain
turbulence when ItBrag < 1. Energy spectra are similar to those in MHD, but with
increasing turbulent residual energy, ER ≡ [〈(B − B0)

2
〉 − 〈u2

〉]/[〈(B − B0)
2
〉〈u2
〉]

1/2,
at low ItBrag (i.e. the system becomes more magnetically dominated, as occurs in
an interrupted shear Alfvén wave). Spectral slopes are close to k−5/3, or slightly
shallower (cf. Maron & Goldreich 2001; Boldyrev 2006; Beresnyak 2012; Perez et al.
2012). Comparing figures 3(a) and 3(b), we see that trans-Alfvénic and sub-Alfvénic
turbulence are broadly similar at the same ItBrag, viz., δbint = 1/4 turbulence with
δbturb≈ 1/4 is comparable to δbint= 1 turbulence with δbturb≈ 1 (although the residual
energy is larger in the sub-Alfvénic case). We also see, in figure 3(c), that ItBrag < 1
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(a) (b)

(c) (d)

FIGURE 3. (a) Kinetic-energy (EK , solid lines) and magnetic-energy (EM, dashed lines)
spectra, for trans-Alfvénic turbulence simulations with δbturb = δB⊥/B0 ≈ 1 (Lx = 1)
at resolution Nx,y,z = 192, and a mirror limiter but no firehose limiter. As labelled,
the different colours show simulations with different ItBrag ≈ δb2

int/δb
2
turb. We expect

the turbulence to be affected by magneto-immutability for ItBrag . 1. The inset shows
spectra for low-resolution simulations (Nx,y,z = 48) at even smaller ItBrag. (b) Spectra
for sub-Alfvénic-turbulence simulations, δbturb = δB⊥/B0 = 1/4 (Lx = 4) and resolution
Nx,y,z = 96 (we bin energies in k⊥ = (k2

y + k2
z )

1/2 in this case due to the elongated box).
(c) As in (a) (trans-Alfvénic turbulence, Lx = 1), but comparing the case with only a
mirror limiter (blue) to that with both a mirror and firehose limiter (green) for ItBrag ≈

1/16. The two are very similar, with a slightly smaller residual energy when the firehose
limiter is used. (d) Anisotropic structure functions of the magnetic and kinetic energy
(S2B = 〈[B(x+ l)− B(x)]2〉 and S2u = 〈[u(x+ l)− u(x)]2〉, respectively) for trans-Alfvénic
turbulence (Lx=1). Blue curves show ItBrag≈1/16 Braginskii MHD turbulence while black
curves show MHD (we plot S2 versus l−1 for comparison with the other panels). The
increments l are taken either perpendicular to the local scale-dependent magnetic field,
S2(l−1

⊥ ), or parallel to the field, S2(l−1
‖ ), illustrating increasing anisotropy at small scales,

as in MHD (Goldreich & Sridhar 1995, 1997).

turbulence with both mirror and firehose limiters on 1p is relatively similar to that
with just a mirror limiter, aside from the slightly smaller ER.

We have run a variety of other common MHD-turbulence diagnostics on these
simulation sets, including calculations of anisotropic structure functions of the kinetic
and magnetic energy, which are shown in figure 3(d) for the trans-Alfvénic MHD and
ItBrag= 1/16 simulations. These are calculated using the method of Chen et al. (2011)
and Mallet, Schekochihin & Chandran (2015), by selecting for increments l that are
either perpendicular (cos−1(l̂ · b̂) > 70◦) or parallel (cos−1(l̂ · b̂) < 20◦) to the local
magnetic field around the chosen increment B[(x1 + x2)/2], where l = x2 − x1. We
clearly see the signatures of scale-dependent anisotropy in both simulations, with the
cascade following the scalings S2 ∼ l2/3

⊥ and S2 ∼ l1
‖

usually expected for a critically
balanced MHD cascade. Note that this calculation is carried out on the trans-Alfvénic
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simulations in a cubic box with isotropic forcing, so the anisotropy measurement
is not influenced by the assumption of critical balance in the outer-scale forcing.
We have also computed the alignment of u and B (using the method of Mallet
et al. 2016), again finding no striking differences compared to MHD turbulence (not
shown).

Overall, the biggest difference compared to MHD is the increase in ER. This appears
to be related, in part, to 〈1p〉 being negative (thus changing the ratio of δu⊥ to δB⊥
in an Alfvén wave), as well as to the extra dissipation in the momentum equation
(but not the induction equation) due to Braginskii viscosity (see figure 6a). However,
the behaviour of ER, including why its relative increase is larger in sub-Alfvénic
than trans-Alfvénic turbulence, is not well understood by us at the present time.
More generally, aside from these differences in ER, it remains unclear how ItBrag < 1
turbulence can be so similar to MHD turbulence. The magnitude of the velocity
fluctuations remains well above the interruption limit in all ItBrag < 1 simulations
(and for ItBrag � 1, severely so), implying that isolated linearly polarized Alfvénic
fluctuations would be unable to propagate for amplitudes similar to those we find
in our turbulence (see § 1.1 for further discussion). Evidently, further study of other
statistics and the structures in the flow and magnetic field is warranted (see, e.g.
Perez & Boldyrev 2009; Zhdankin, Boldyrev & Uzdensky 2016). However, given the
limited resolution of our simulations, we leave this to future work.

The spectra and structure functions shown in figure 3 are specific to Braginskii
MHD with microinstability limiter(s). Although an exhaustive survey is not the
purpose of this work, it is helpful to briefly comment on their robustness. Spectral
slopes and general features (e.g. scale-dependent anisotropy) are robust to changing
the mirror-limit threshold, although, like the addition of a firehose limit (figure 3c),
these modifications result in modest changes in the residual energy at a given ItBrag. In
the unphysical case without microinstability limiters – i.e. when 1p is completely free
to evolve – the characteristics of the turbulence differ further, because 〈1p〉 is tied
directly to the dissipation of B, thus driving 〈1p〉> 0 (see figure 4).4 Finally, because
δbint depends on k‖ in the weakly collisional regime (through ωA) but not in the
collisionless regime (see (1.2)), these spectra are likely specific to Braginskii MHD.
Further simulations are required to explore spectra in collisionless high-β plasmas.

3.2.2. Pressure-anisotropic forces reduce b̂b̂ : ∇u
The key conjecture in § 2, which we justified only heuristically, is that pressure-

anisotropy stresses inhibit motions with large magneto-dilations (b̂b̂ : ∇u). That this
is indeed the case is shown in figure 4, where we compare the probability density
function (PDF) of b̂b̂ : ∇u in MHD turbulence and in Braginskii turbulence at ItBrag≈

1/16 using both limiters, only a mirror limiter, or no limiters. We see that pressure-
anisotropy forces are remarkably effective at preventing |b̂b̂ : ∇u| from becoming
too large, significantly reducing the range of |b̂b̂ : ∇u| produced by the turbulent
motions. Microinstability limiters – which affect regions with 1p > B2/8π and/or

4More precisely, if B had small-scale structure and its statistics were constant in time, then 〈b̂b̂ :∇u〉 would
be positive (to see this, compute 〈D ln B/Dt〉 = 〈b̂b̂ : ∇u〉 + η4〈B ·∇4B/B2

〉, and note that the final dissipation
term is negative; see also Helander et al. 2016). Thus, for the system to be turbulent, 〈1p〉 – which is related
to b̂b̂ : ∇u through 1p=µBragb̂b̂ : ∇u – must increase indefinitely with decreasing ItBrag. This is no longer
true with a mirror and/or firehose limiter, which breaks the proportionality between 1p and b̂b̂ : ∇u. Thus, as
well as being unphysical, turbulence with no limiters is fundamentally different to that with limiters (although
it does share some similar features; see figure 4).
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FIGURE 4. Probability density function (PDF) of 4πb̂b̂ : ∇u/〈B2
〉 for δbturb ≈ 1 (Lx = 1)

simulations (spectra shown in figure 3). We compare MHD turbulence (black-dot-dashed
line) to ItBrag ≈ 1/16 (δbint ≈ 1/4, µBrag ≈ 2) turbulence with a mirror limiter (blue
line), with both mirror and firehose limiters (red-dotted line), and with no limiters
(yellow-dashed line). The vertical dotted lines denote the mirror and firehose limits for the
ItBrag ≈ 1/16 simulations. Regions with thicker lines (e.g. b̂b̂ : ∇u below the mirror limit
for the blue line, or b̂b̂ : ∇u between the firehose and mirror limits for the red dotted
line) indicate where pressure-anisotropy forces are dynamically relevant (not limited). The
inset is a zoom into the central region. This figure shows that magneto-immutability
forces significantly decrease the probability of turbulence producing large changes in
magnetic-field strength. Note that the change in 〈B2

〉 between these simulations is modest,
and not the cause of the significant changes to the width of the PDF.

with 1p<−B2/4π – increase the probabilities of larger |b̂b̂ : ∇u| because they sever
the adiabatic tie between b̂b̂ : ∇u and the pressure anisotropy. However, we see that,
even in limiter-affected regions, large |b̂b̂ : ∇u| events are much less probable. Indeed,
while '54 % of the volume lies within the stable region −B2/4π < 1p < B2/8π in
the mirror–firehose-limited turbulence (red-dotted line), only '3 % of the equivalent
MHD turbulence (black-dot-dashed line) does. This shows that microinstabilities
do not eliminate the plasma’s tendency towards magneto-immutability, even if they
instantaneously constrain 1p to lie within the stable range of values.

3.2.3. The limit ItBrag→ 0 is well defined
An important assumption used in some arguments of § 2 is that an incompressible

flow is able to self-organize to minimize b̂b̂ : ∇u, viz., that the system can approach
a well-defined asymptotic state with non-zero u and B as ItBrag → 0. Figures 5
and 6 provide numerical evidence that this is the case. In particular, we see that
key statistical properties of the turbulence appear to reach an asymptotic regime as
ItBrag decreases. Figure 5(a) shows that the width of the 1p distribution changes
from scaling as (1p)rms ∼ It−1

Brag for ItBrag � 1, to (1p)rms ∼ const. when ItBrag � 1.
As discussed below (see (2.5)), this scaling demonstrates that pressure-anisotropy
forces decrease b̂b̂ : ∇u so that the pressure-anisotropy stress is always comparable to
B ·∇B, even as µBrag increases. The turbulence thus becomes more and more magneto-
immutable. We also show, in figure 5(b), the mean pressure anisotropy 4π〈1p〉/〈B2

〉

as a function of ItBrag. This appears to approach 〈1p〉 ≈ −0.4〈B2
〉/4π at ItBrag � 1.

Finally, in figure 6(a), we compare the turbulent dissipation due to Braginskii viscosity,
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(a) (b)

FIGURE 5. Scaling of 1p statistics with ItBrag in the δbturb ≡ δB⊥/B0 ≈ 1 (Lx = 1)
simulations with a mirror, but no firehose, limiter. We compare simulation sets with
varying resolution in order to explore the ItBrag � 1 regime of magneto-immutable
turbulence. (a) Width of the 1p distribution, calculated for 1p < 0, where the pressure
anisotropy is not artificially limited (1p<0

rms ≡ 〈1p2
|1p<0〉

1/2; see figure 4, thick blue
line). The convergence of 4π1p<0

rms/〈B
2
〉 to approximately 2 at ItBrag� 1 shows that the

flow becomes increasingly magneto-immutable with decreasing ItBrag. (b) Mean pressure
anisotropy in each simulation, which also appears to converge to an asymptotic value
4π〈1p〉 ≈ −0.4〈B2

〉 at ItBrag� 1. Error bars in each panel show the temporal dispersion
of the plotted quantities.

(a) (b)

FIGURE 6. Scaling properties of turbulence statistics in the trans-Alfvénic (δbturb ≡

δB⊥/B0 ≈ 1) mirror-limited simulations, using the same conventions as figure 5.
(a) Dissipation D (energy lost per τA) due to 1p (D1p ≡

∫
dx1pb̂b̂ : ∇u; solid lines),

and due to hyper-viscosity (Dν ≡ ν4
∫

dxu ·∇4u; dashed lines) and hyper-resistivity (Dη ≡

(η4/4π)
∫

dxB · ∇4B; dot-dashed lines), with values normalized to the total dissipation
rate Dν + Dη + D1p. Blue lines with symbols show Nx,y,z = 192 simulations, black lines
show Nx,y,z= 48 simulations. The anisotropic diffusion remains approximately constant for
ItBrag . 1, despite the increasing µBrag. (b) Turbulent residual energy ER. We see tentative
evidence for the approach to an asymptotic value ER≈ 1.5 as ItBrag→ 0, again suggesting
that the turbulence has a well-defined magneto-immutable state for ItBrag� 1.

D1p ≡
∫

dx1pb̂b̂ : ∇u, with that due to hyper-viscosity and hyper-resistivity. Because
b̂b̂ : ∇u is unaffected by magneto-immutability in mirror-limiter regions, while
(1p)rms remains approximately constant with ItBrag, the fraction of energy dissipated
by Braginskii viscosity remains approximately constant for ItBrag . 1.
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Finally, the existence of this asymptotic regime in the statistics of 1p as ItBrag→ 0
suggests that the system can reach a well-defined magneto-immutable turbulent state,
where turbulence properties – e.g. velocity and field statistics – do not depend on
ItBrag. This is possible because the typical size of the Braginskii viscous stress in
the momentum equation, ∇ · (b̂b̂1p), can become independent of µBrag. Similar
ideas are widely applied to compressible hydrodynamic turbulence, where the
properties of the velocity field become effectively independent of Mach number M
for M� 1. We give tentative evidence that our simulations approach this asymptotic
magneto-immutable turbulence in figure 6(b), which shows that the turbulent residual
energy ER appears to approach a constant value for It−1

Brag & 300. However, we caution
that the details of this asymptotic state – e.g. the value of ER as ItBrag→ 0 – depend
on the limiters used and the Braginskii MHD model. Furthermore, reaching this
asymptotic state is computationally very challenging due to the enormous µBrag,
and our lowest ItBrag simulations may be suspect due to their very low resolutions
(Nx,y,z = 48). The study of detailed flow and field structures and/or statistics (e.g.
scale-dependent anisotropy) at such a low resolution is of questionable utility, so it
remains an open question how the properties of the turbulence at asymptotically low
ItBrag differ from those at moderate ItBrag or in MHD (although it is worth noting that
energy spectra at ItBrag ≈ 1/642 are similar to those at lower ItBrag; see the inset of
figure 3a). There is also clearly much further work needed in order to understand
ItBrag→ 0 turbulence in less collisional plasmas where νc . β1/2ωA and the Braginskii
MHD model does not apply.

4. Conclusions
We propose that weakly collisional and collisionless plasma turbulence is often

‘magneto-immutable’ – that is, it self-organizes to resist changes to |B| by minimizing
|b̂b̂ : ∇u|. This occurs due to the pressure-anisotropy stress ∇ · (b̂b̂1p), somewhat
analogously to the way in which bulk pressure forces (and bulk viscosity) render
fluids incompressible. In Alfvénic turbulence, our focus here, the effect is relevant
for all scales above the plasma’s kinetic microscales, and for fluctuation amplitudes
around and above the ‘interruption limit’ (1.2) (Squire et al. 2016). By analogy
with the Reynolds number, we define the turbulent ‘interruption number’ ItBrag,
which is the ratio of the ‘pressure-anisotropy time scale’ (the time scale required
to generate |1p| ∼ B2) to the inertial time scale of the turbulence. Turbulence
becomes magneto-immutable for ItBrag . 1, which, for trans-Alfvénic fluctuations
(δB⊥ ∼ B), occurs when β & νc/ωA in a weakly collisional plasma, or when β & 1 in
a collisionless plasma. While kinetic microinstabilities frustrate the plasma’s attempts
to become magneto-immutable by breaking the adiabatic link between b̂b̂ : ∇u and
1p, they cannot eliminate the effect, even if they instantaneously constrain 1p to lie
within the region of stability (|1p|/p0 . β−1).

We confirm these ideas using driven magnetized-turbulence simulations in
the weakly collisional Braginskii MHD model, which contains the key physics
without truly kinetic complications. The resulting magneto-immutable turbulence
strongly resembles Alfvénic MHD turbulence, displaying similar energy spectra and
scale-dependent anisotropy, although it exhibits a somewhat larger residual energy.
This similarity is particularly surprising given that isolated linearly polarized shear
Alfvén waves – generally considered to be the building blocks of MHD turbulence
– would be interrupted and unable to propagate for fluctuation amplitudes similar to
those seen in the turbulence. To get around this, it appears that the turbulent flow
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self-organizes into a nonlinear analogue of circular polarization, with tightly curled
flow structures that avoid changing B (see figure 2). Examination of the probability
density function of b̂b̂ : ∇u (related to 1p through 1p = µBragb̂b̂ : ∇u in Braginskii
MHD) shows that the turbulence strongly reduces the probability of fluctuations that
generate high b̂b̂ : ∇u compared to MHD, without significantly reducing amplitude of
the u and B fluctuations themselves. This effect is analogous to low-Mach-number
hydrodynamic fluctuations self-organizing to reduce the probability of high ∇ · u. In
the limit of very high β (ItBrag→ 0 or µBrag→∞), we see tentative evidence that the
turbulence approaches a well-defined magneto-immutable state, where the statistics
of u and B no longer depend on the Braginskii viscosity (i.e. ItBrag). Again, this is
analogous to how the statistics of u become independent of Mach number as subsonic
turbulence becomes incompressible.

A promising application of the ideas discussed throughout this work would be to
MHD-scale turbulence in the collisionless solar wind, although the characteristics of
magneto-immutability in the collisionless regime are admittedly still to be investigated
at the present time. While many studies have found that solar-wind turbulence is well
described by MHD models (Matthaeus et al. 2015; Chen 2016), we predict a key
difference: that the distribution of b̂b̂ : ∇u should be much narrower than what
would be driven by unconstrained (non-magneto-immutable) fluctuations of similar
amplitude (see figure 4). Intriguing evidence for this can be found in observations
that show B fluctuations preferentially trace out the surface of a sphere, keeping |B|
approximately constant (see, e.g. figure 4 of Bruno et al. 2001, as well as Lichtenstein
& Sonett 1980; Tu & Marsch 1993; Tsurutani et al. 1994; Riley et al. 1996). A
magneto-immutability-based explanation for this behaviour differs somewhat from the
recent work of Tenerani & Velli (2018), who argue that constant-B fluctuations arise
directly from the parallel firehose instability. It is, however, consistent with the work
of Vasquez & Hollweg (1998), who saw constant-B states emerging in (hybrid) kinetic
simulations. Further work on collisionless plasmas, as well as some understanding of
magneto-immutability in an imbalanced cascade, is necessary before making detailed
comparisons to solar-wind data.

On the theoretical side, a thought-provoking (if esoteric) question, is whether it is
possible to formulate directly and solve the equations for a truly magneto-immutable
fluid, just as the incompressible fluid equations constitute a valuable model for
subsonic fluid dynamics. There remain many open questions related to the structure
of magneto-immutable turbulence – for instance, how it is able to remain so similar
to Alfvénic MHD turbulence – which will require higher-resolution simulations
to address in detail. It is also important to move beyond the incompressible,
high-collisionality Braginskii MHD model used here, exploring the influence of
heat fluxes on pressure-anisotropy stresses (Mikhailovskii & Tsypin 1971), how
magneto-immutability effects interact with density fluctuations (i.e. compressibility),
the physics of magneto-immutability in the collisionless regime and the role of
realistic microinstability evolution (e.g. Kunz et al. 2014; Melville et al. 2016).
These questions can be tackled in future work using Landau-fluid models (Snyder
et al. 1997; Santos-Lima et al. 2014; Sulem & Passot 2015) and/or MHD-scale
kinetic simulations.
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