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Abstract
The work reported in this paper addresses two aspects. In the first part, numerical simulations
are conducted to examine the impact of magnetic equilibrium shaping (elongation and
triangularity), on both conventional Ion Temperature Gradient (ITG) modes and Short
Wavelength ITG modes. This analysis is performed considering the experimental profiles and
parameters of the ADITYA-U tokamak, employing the nonlinear global gyrokinetic
Particle-in-Cell code ORB5. The linear and nonlinear collisionless electrostatic simulation of
these modes are carried out with kinetic ions and adiabatic electrons. From the linear results, it
has been observed that the magnetic equilibrium shaping slighty reduced the growth rates and
widened the spectrum, and the maxima of growth rate curve is shifted to higher toroidal wave
number. We find that the heat flux is reduced by a significant ≃35% for the true circular
magnetohydrodynamic magnetic equilibrium as compared to ad hoc concentric circular
equilibrium reported in Singh et al (2023 Nucl. Fusion 63 086029). A further ≃10% reduction
in the heat flux is seen with magnetic equilibrium shaping. In the second part, linear collisionless
electrostatic simulation studies of ITG coupled with fully kinetic electrons (both trapped and
passing electrons are treated kinetically) using a drift-kinetic ordering is performed. It can be
seen from the linear results that, in presence of kinetic electrons, the growth rate and real
frequency of the ITG mode are increased significantly for ADITYA-U parameters and a mode
propagating in the electron diamagnetic direction is identified at high toroidal wavenumbers.
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1. Introduction

Anomalous transport in tokamaks is believed to be caused
by turbulence driven by a variety of micro-instabilities [1–
3]. At low plasma beta, these are essentially electrostatic
in nature and comprise Ion Temperature Gradient (ITG),
Trapped Electron Modes (TEMs) and Electron Temperature
Gradient (ETG) modes. The presence of density and temper-
ature variations in a magnetically confined plasma provides
the necessary free energy for micro-instabilities. For instance,
even at kθρs > 1.0, the ITG mode, which is triggered by
ITGs, becomes unstable in the presence of extremely sharp
background gradients [4, 5]. This instability results in the
emergence of short wavelength ITG modes (SWITGs) [4–7].
Gyrokinetic simulations reveal the importance of these short
wavelength micro-instabilities for experimental parameters
[8]. Therefore, it is vital to understand the linear and nonlin-
ear properties of these modes and their role in the anomal-
ous transport of energy and particles. ADITYA-U [9, 10] is a
small-size tokamak ideal for studyingmicro-instabilities in the
presence of sharp density and temperature gradients. Recently
reported gyrokinetic simulations [11], which were done using
ORB5 [12, 13] with non-adiabatic ions and adiabatic elec-
trons, demonstrate that SWITG mode naturally coexists with
the conventional ITG mode in ADITYA-U due to sharp tem-
perature and density gradients. However, in plasmas confined
by inhomogeneous magnetic fields, a portion of electrons
become trapped in low magnetic field regions. These trapped
electrons can either intensify micro-instabilities derived from
ion dynamics, such as the ITG-TE (ITG coupled with trapped
electron) mode, or generate other forms of instabilities known
as trapped particle mode [2, 3, 14–18]. Likewise, the presence
of significant gradients can also lead to a shorter wavelength
branch of TEMs [19, 20].

Further, the ADITYA-U tokamak is planned to have a
controlled shaped plasma operation, the impact of which on
ITG-SWITG branch could be substantial. Studies conducted
through numerical simulations utilizing local δf gyrokinetic
(GK) codes and analytical equilibrium models have demon-
strated that larger elongations and higher triangularity (at
high elongations) have a stabilizing impact on ITG-ae (ITG
with adiabatic electron) and ITG-TEs [21, 22]. It has also
been observed using global codes [23, 24], higher elongations
provide a stabilizing effect. The significance of plasma shap-
ing effects, including elongation, triangularity, and Shafranov
shift, in enhancing tokamak performance has been recognized
for a considerable time. It is understood that these shaping
effects can control the growth rate of ITG turbulence, and the
level of ITG turbulence can also be regulated by zonal flow
(ZF). Furthermore, recent numerical simulations indicate that
the shaping effects can have an impact on the level of colli-
sionless residual ZF [21, 22, 25, 26].

Following the work reported in [11] which was performed
with an ad hoc concentric circular equilibrium and treated the
electrons adiabatically, the present work extends this to both
shaped magnetohydrodynamic (MHD) equilibria and a kinetic
electron treatment. The manuscript is structured as follows:
section 2 describes the numerical model used in simulation
along with the numerical setup. In section 3 the effect of mag-
netic equilibrium shaping (elongation and triangularity) on
ITG and SWITG modes is assessed through linear and nonlin-
ear global GK simulations with kinetic ions and adiabatic elec-
trons. In section 4 we present our linear findings from treating
the electrons kinetically while remaining electrostatic and col-
lisionless. Finally, conclusions are drawn in section 5.

2. ORB5 gyrokinetic model

In the ORB5 code, the Vlasov-Poisson system is solved in
the gyrokinetic limit for an axisymmetric toroidal plasma.
The radial coordinate is defined as s=

√
ψ/ψedge, where ψ

is the poloidal flux. Circular concentric magnetic surfaces,
representing ad hoc equilibrium [27], and true MHD equilib-
rium are distinct types of magnetic equilibria incorporated into
the ORB5. In the case of true MHD equilibrium, the Grad–
Shafranov equation is solved with a fixed plasma boundary
using the CHEASE code [28], and subsequently, it is coupled
with the ORB5 code. It’s noteworthy that ORB5 employs a
straight field line coordinate system. Under gyrokinetic frame-
work, the time evolution of ion distribution function is given
by:

∂fi
∂t

+ Ẋ ·∇fi+ v̇∥
∂fi
∂v∥

= C+ S (1)

where X is the position of gyro-center in real space, v∥ is the
component of velocity parallel to the equilibrium magnetic
field B= Bb, here C and S indicates collisions and sources
respectively. Though ORB5 is both fully electromagnetic [29]
and collisional [30] code, this work addresses the electrostatic
and collisionless limits. For a species with charge q and mass
m, the equations of motion are given by,

Ẋ= v∥b+
B
B⋆
∥
(v∇B + vE×B + vc) , (2)

v̇∥ =−

(
1
m
b+

1
mv∥

B
B⋆
∥
(v∇B + vE×B + vc)

)
· (µ∇B+ q∇⟨ϕ⟩G) , (3)

where v∇B = (µ/(mΩB))B×∇B represents the grad-B
drift velocity, vE×B =

(
1/B2

)
B×∇⟨ϕ⟩G represents the

E×B drift velocity, and vc = (v2∥/Ω)(∇× b)⊥ denotes the
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curvature drift velocity. Here, the gyroaveraged electrostatic
potential is denoted by ⟨ϕ⟩G. Finally, the effective magnetic
field (B⋆) is written as

B⋆ = B+
B
Ω
v∥∇× b= B⋆

∥b+
B
Ω
v∥ (∇× b)⊥ = B⋆

∥b+
B
v∥

vc

(4)
The closure of the system of equations (1)–(3) is accomplished
through the incorporation of the gyrokinetic Poisson equation
under the assumption of quasi-neutrality.∑

α

qαδnα = 0 (5)

where, δnα represents the perturbed density, with the sum-
mation encompassing all plasma species denoted by α.
Equation (5) undergoes a transformation, evolving into a lin-
ear integral equation governing the electrostatic potential, as
expressed by equation (6).

qi
mi

∇⊥ · n0i
Ω2

0i

∇⊥ϕ − qen0e
T0e

(ϕ −⟨ϕ⟩FS) = δn̄i (6)

In equation (6), ⟨ϕ⟩FS represents a flux-surface-averaged elec-
tric potential. More details of model equations can be found
in [12, 13]. All quantities in the code are normalized using
four parameters: the ion mass (mi), the ion charge (qi = Zi e,
where Zi is the atomic number and e is the electric charge),
the electron temperature at a specified reference position s0
(Te(s0)), and the magnetic field on axis (B0). These paramet-
ers serve to determine all other normalized quantities. Time
units are defined as the inverse of the ion-cyclotron frequency,
Ωci = qiB0/mi. Velocity units are normalized using the ion
sound velocity (cs =

√
eTe(s0)/mi, with Te(s0) in electron

volts), length units are normalized via the ion sound Larmor
radius (ρs = cs/Ωci).

3. Effects of magnetic equilibrium shaping on
ITG-SWITG modes

The recently upgraded ADITYA-U tokamak [9, 10] is a
medium aspect ratio tokamak with divertor configuration [10].
It is well suited to study microinstabilities in the presence of
temperature and density gradients. In this section, we extend
the work in [11, 31] to include the effect of magnetic equi-
librium shaping. The simulations are conducted on spatial
grids Ns = 448,Nθ⋆ = 512,Nφ = 256, (s,θ⋆,φ) representing
the radial, poloidal, and toroidal directions.

The number of markers is Np = 100× 106, the time step
is∆t= 10Ω−1

ci and ρ∗ = ρs/a= 0.00365. The ITG instability
is taken at the peak (s0 = 0.6) of the temperature and density
gradients. In the density and temperature profiles, the symbols
δsn and δsT represent the radial width of the density and tem-
perature profiles, respectively. Ln and LT denote the density
and temperature gradient scale lengths, respectively. Each lin-
ear simulation corresponds to a single toroidal mode number.
The profiles and parameters that are used in the simulation of
ADITYA-U are depicted in table 1 and figures 1(a)–(c). Three
distinct MHD equilibria have been investigated in this paper:

(i) a circular equilibrium with κ= 1.0, motivated by the exper-
imental shot studied in [11]; (ii) a shaped equilibrium with
κ= 1.2, δ = 0.45 reported by [9]; and (iii) an equilibriumwith
κ= 1.4, δ = 0.45, which is the theoretical maximum elonga-
tion (and triangularity) that is achievable on ADITYA-U with
the current vacuum vessel.

3.1. Linear gyrokinetic simulations

In this subsection, we present the linear gyrokinetic simu-
lations of ITG-SWITG modes for circular and shaped mag-
netic equilibria. The growth rates and real frequencies are
calculated using ORB5 for different toroidal mode numbers
and are shown in figures 2(a) and (b) respectively. As depic-
ted in figure 2(a), the growth rate exhibits two peaks instead of
the typical single peak observed in linear standard ITGmodes.
The second peak is the characteristic of the SWITG mode.
In this toroidal mode numbers n scan, elongation (κ) takes
values of 1.0 (MHD circular equilibrium), 1.2 (shaped MHD
equilibrium) and 1.4 (shapedMHD equilibrium). All the mag-
netic equilibria are obtained from CHEASE code [28]. Both
shaped cases have the same triangularity value of δ= 0.45.

The frequency of ITG-SWITG in figure 2(b) shows a
non monotonous behavior. This can be explained as fol-
lows. The poloidal mode number (kθρs) is computed using
the relationship kθρs =

nqρs
r . In the figure 2, the toroidal

mode numbers are scanned in the range of 0− 160 cor-
responding to the poloidal wavenumbers (kθρs = 0− 2.0).
For kθρs ⩽ 1, the real frequency increases monotonically
with kθρs, but then almost stays constant for 1⩽ kθρs ⩽
2.0. The following dispersion relation for SWITG [32, 33]
for adiabatic electrons is obtained by the quasi-neutrality
equation in the context of a local gyrokinetic formulation in
the limit ω∗i > ω > (ωdi+ k∥v∥), where ωdi is the ion mag-
netic drift frequency. The dispersion relation for the SWITG
mode is given as, ω = τ

τ+1

(
ηi
2 − 1

)
ω∗iI0(k2θρ

2
s )exp(−k2θρ2s ).

Here, τ = Te/Ti, I0 is the modified Bessel function of order
zero, ω∗i =−(vthi/Ln)(kθρs) is the ion diamagnetic drift
frequency, and Ln is the density scale length. It can be
seen from the expression of the dispersion relation, that
the mode frequency ω scales as kθρs for small k2θρ

2
s and

for larger k2θρ
2
s (kθρs ≫ 1) scales almost as constant as

I0(k2θρ
2
s )exp(−k2θρ2s )→ 1/

√
2π(k2θρ

2
s ) = 1/(

√
2πkθρs).

It can be seen from the figure 2(a) that the maximum lin-
ear growth rates for the both modes (ITG and SWITG) are
a little reduced with magnetic equilibrium shaping and the
spectrum is widened with the maximum growth rate shif-
ted to higher toroidal wave number (n). This similar type of
observation was reported in [25] for the conventional ITG
modes. It can also be seen from figure 2(b) that the real fre-
quencies are decreasing with magnetic equilibrium shaping.
It has also been reported in [25] that the global ITG mode
sees an average temperature gradient, and the scale length
of the temperature gradient is modified to R(1−E ′)/LT with
E ′ = r(κ− 1)/(κ+ 1), where r is the magnetic surface label
coordinate. Therefore, the scale length of temperature gradient
is reduced with magnetic equilibrium shaping. As we see that
the driving source for ITG is reduced therefore both the growth

3
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Table 1. Parameters and equilibrium profiles of ADITYA-U.

Parameters: Equilibrium Profiles:

• B-field : B0 = 1.0 Tesla, mi
me

= 1836 • N-profile and T-profile:
• Density: N0 = N(s0) = 0.955× 1019 N(s)/N0 = exp(− a δsn

Ln
tanh( s−s0

δsn
))

• Temperature : T0 = T(s0) = 78 eV Ti,e(s)/T0 = exp(− a δsT
LT

tanh( s−s0
δsT

))

•Major radius : R0 = 0.75 m δsn = 0.665, δsT = 0.13 at s= s0
•Minor radius : a= 0.25 m • q-profile and ŝ-profile:
• Radial coordinate : s, s0 = 0.6 q(s) = 1.25+ 0.67 s2 + 2.38 s3 − 0.06 s4

•Ln = 0.136 m, LT = 0.028
m→ ηi,e(s0) = Ln/LT = 4.86

such that q(s= s0) = 2.0;

•τ(s) = Te(s)/Ti(s) = 1,
ϵn = Ln/R0 = 0.18,
ϵT = LT/R0 = 0.037.

shear ŝ is positive and at s= s0, ŝ= 1.

Figure 1. Equilibrium profiles of ADITYA-U taken from [11] (a) safety factor (q) & shear (̂s) profiles (b) T i and Te are the ion and electron
temperature profiles respectively and N is the experimental and fitted density profiles (c) R0/LTi,e & R0/LN are the normalized temperatures
and density scale lengths and ηi,e = LN/LTi,e .

Figure 2. (a) Growth rate (γ/Ωci) and (b) frequency (ωr/Ωci) as a function of the toroidal mode number n for circular (blue),
κ= 1.2, δ = 0.45 (green) and κ= 1.4, δ = 0.45 (red) MHD equilibria.

rate and real frequencies are decreased. Therefore elongation
plays an important role to stabilize the ITG as well as SWITG
modes. Figures 3(a) and (b) show the 2D poloidal mode struc-
ture for circular equilibrium obtained from ORB5 for toroidal
wave numbers n= 35 and n= 85, respectively. The corres-
ponding poloidal wave numbers are kθρs ≃ 0.4 (first peak) and
kθρs ≃ 1.2 (second peak), respectively. The mode structures

for shapedMHD equilibrium (κ= 1.4) for toroidal mode num-
bers n= 45 (first peak) and n= 95 (second peak), respectively,
are also shown in figures 3(c) and (d) respectively.

Following the linear simulation, in the below subsection
we present the magnetic equilibrium shaping effects on ITG-
SWITG modes with adiabatic electrons through nonlinear
global simulations.

4
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Figure 3. Top panel shows the 2D poloidal mode structure for the (a) n= 35 and (b) n= 85 instability from the circular equilibrium,
whereas the bottom panel shows the (c) n= 45 and (d) n= 95 modes for the shaped (κ= 1.4) equilibrium. Each n corresponds to the
respective ITG and SWITG peak growth rates.

3.2. Nonlinear gyrokinetic simulations

In this subsection, we will outline our findings for effect of
magnetic equilibrium shaping on the nonlinear simulation of
ITG-SWITG modes with adiabatic electrons. The number of
markers is Np = 200× 106. The 3D grid resolution for the
fields solver is Ns×Nθ⋆ ×Nφ = 448× 1024× 512. A field-
aligned Fourier filter is applied with nmax = 125 (nmax is the
maximum value of the toroidal mode number), which keeps
only the modes almost aligned with the background magnetic
field, i.e. m ∈ [nq−∆m,nq+∆m], for all n ∈ [0,nmax] where
(m,n) are the poloidal and toroidal mode numbers, respect-
ively, and∆m is the width of the field-aligned filter. Adaptive
technique is employed for the gyro-averaging with maximum
64 gyro-points. The arbitrary wavelength field solver [34–36]
is used for the quasi-neutrality equation and the time step
size is ∆t= 10Ω−1

ci . Convergence test for the grid resolution
and time steps for nonlinear simulation have already been
conducted and reported in [11]. The simulation includes tor-
oidal mode numbers n ranging from 0 to 125 and poloidal
mode numbers m spanning from −270 to 270. This range
corresponds to poloidal wave numbers kθρs covering values
from 0.0 to 1.4. All the simulations have a sufficiently high

signal-to-noise ratio, S/N> 30. As indicated in equation (1), S
stands for the sources that can be added to regulate numerical
noise and/or maintain temperature and density profiles; S=
Sk+ Sh, where Sh is a heating source term (considered zero
in the present simulation) and Sk is a Krook operator [37].
The Krook operator, Sk =−γKδf+ Scorr, where γK ∼ γmax/10,
with γmax, the maximum linear growth rate. A correction
term, Scorr is designed to conserve the particle density, the
parallel momentum, the kinetic energy, and the ZFs [37]. In
the present simulation, we used ‘gradient-driven’ simulations
using Krook operator to maintain the profiles gradient [11, 38–
40] such as to conserve, the density, parallel momentum, and
ZF residual phase space structures. This operator permits a cer-
tain level of relaxation of the temperature profiles [11, 37, 40].
Boundary condition for the electrostatic potential is the unicity
[34, 41] at the magnetic axis, δϕ(s= 0,θ∗) = ⟨δϕ⟩θ(s= 0),
for all θ∗ and at the plasma boundary (s= 1), it obeys nat-
ural boundary conditions described in [34]. When numerical
particles (markers) leave the plasma, they are placed back into
the plasma with a zero weight (δf = 0 is set to zero along
characteristics of the Vlasov equation which cross the bound-
ary with negative radial velocity) conserving their energy,
magnetic moment, and toroidal canonical momentum [39].

5
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The ambient plasma profiles defining f 0 are fixed. The ‘mean-
field’ ZF is extracted from the fluctuating electrostatic poten-
tial. It is not evolved separately from the electrostatic potential.

The normalized electrostatic field energy and normalized
volume-averaged heat flux are depicted in figures 4(a) and
(b) for circular, κ= 1.2 and κ= 1.4 respectively. For all the
cases in figure 4(a), the electrostatic field energy exhibits an
initial phase of exponential growth over time, followed by a
subsequent nonlinear saturation phase. The electrostatic field
energy Efield, defined as [12]

Efield =

ˆ
qi
2
(⟨ni⟩G− n0)ϕ dR⃗ (7)

where ⟨ ⟩G denotes a gyro-averaged quantity and n0 is the
equilibrium density. From figure 4(a), it can be observed that
after the initial linear phase the mode amplitude gradually sat-
urates from time t∼ 25.0× 103Ω−1

ci , for all the cases. The nor-
malized field energy is given as Efield/(⟨n⟩VTe), where V is the
plasma volume, n is the density and ⟨n⟩ its averaged value in
space and Te = Te(s0) is the electron temperature at s0 = 0.6.
Figure 4(b) and displays the volume-averaged heat flux Q for
circular and shaped equilibrium (κ= 1.2 & κ= 1.4) respect-
ively, defined by [12]

Q=
1
V

ˆ
V
dR⃗
ˆ
f
(
R⃗,v∥,µ, t

) 1
2
miv

2 ⟨E⃗⟩G× B⃗
BB∗

∥
· ∇ψ
|∇ψ|

B∗
∥dv∥dµ

(8)
and the normalized heat flux is given as Q/(⟨n⟩csTe(s0).As
depicted in figure 4(b), the heat flux undergoes an initial expo-
nential rise during the linear phase, reaching its peak around
t∼ 1.5× 104Ω−1

ci . Subsequently, with the progression of time,
the simulation transitions into the nonlinear phase approxim-
ately at t= 2.5× 104Ω−1

ci , where the ZF sets in. There is an
overall reduction in heat flux and tends towards the steady
state due to interaction between turbulence and ZF. The time-
averaged heat flux in the steady state is around 0.0234 in
the normalized unit for circular case while it is 0.021 for the
shaped MHD equilibrium (κ= 1.4). The heat flux is slightly
reduced by ≃10% due to magnetic equilibrium shaping as
compared to circular equilibrium. The heat flux is found to
be reduced by a significant≃35% for true circular MHDmag-
netic equilibrium as compared to ad hoc concentric circular
equilibrium. The heat flux in ADITYA-U with ad hoc con-
centric circular equilibrium is reported in [11]. The observed
differences (≃35%) in the heat flux mainly appears to come
from the nonlinear simulations between the two equilibrium
models. The differences in the heat flux may be attributed
to the presence of the Shafranov shift, characterized by the
horizontal displacement of flux surface centers with respect
to the magnetic axis. As is well known, this shift arises from
forces exerted by kinetic and magnetic pressures. Notably,
the ad-hoc concentric circular equilibrium model assumes a
zero Shafranov shift [27], whereas in the real MHD equilib-
rium, the Shafranov shift naturally arises through the Grad-
Shafranov solver. The study reported in [42, 43] indicates that

an increase in the Shafranov shift contributes to the stabiliza-
tion of the ITGmode.We therefore emphasize that, where pos-
sible, gyrokinetic simulations should employ a proper treat-
ment of the equilibrium.

From figure 4(a), we see that the electrostatic field energy
decreases due to magnetic shaping (elongation) effects. This
effects can be explained by figure 5. From figure 5, we see that
both the amplitude and the spectral distribution of the electro-
static potential are affected (turbulence is lower in the shaped
plasma, with the energy spectrum slightly shifted towards
smaller scales). The reduction of the electrostatic field energy
can also be explained from the linear simulation. As, we can
from figure 2(a), linear growth rates of ITG-SWITG modes
are decreased due to magnetic shaping effects.

Figure 6 shows the spatio-temporal behavior of the turbu-
lent energy (non-zonal component of the electrostatic field
energy) for circular and shaped cases. The mode intensity
peaks at time t∼ 1.5× 104Ω−1

ci and around s= 0.65. The tur-
bulence exists over a wide radial domain approximately from
s= 0.5 to s= 0.8. Radial plot of η = Ln/LT for both cases is
also shown in figures 6(a) and (b), respectively, at three time
points at (1) the start (orange dashed line) (2) intermediate
(white dashed line) and (3) end of the simulation (green dashed
line). From figures 6(a) and (b), we can see that the turbulent
energy has its maximum amplitude pushed a bit outwards from
the position of maximum log gradient. It looks muchmore act-
ive in the interval s ∈ [0.55− 0.75] for both the cases (circular
and shaped).

Plots of the electrostatic turbulent potential ϕ̃ = ϕ −⟨ϕ⟩FS
at t= 2.0× 105Ω−1

ci , (where ⟨ϕ⟩FS is the flux surface aver-
aged potential) during the nonlinear simulations for circu-
lar and shaped magnetic equilibrium (κ= 1.4) are shown in
figures 7(a) and (b) respectively. E×B ZF is widely recog-
nized for its crucial role in regulating turbulence and improv-
ing confinement in fusion plasmas [44, 45]. Due to magnetic
equilibrium shaping effects, the collisionless residual ZF level
can be influenced as reported in recent numerical simulations
[21, 22, 25, 26]. The plasma shaping effects on the collision-
less residual ZF are also evaluated by an analytical approach
which shows that the residual ZF level increases with elong-
ation and triangularity [46]. As we can see from figures 7(a)
and (b), the ZF shear tears the global structures to regulate the
turbulence for both the cases. Hence, it is crucial to thoroughly
examine the impact of the ZF shearing rate in both cases. The
E×B ZF shearing rate is given by equation (9) [38],

ωE×B (s, t) =
s

2ψs0q
∂

∂s

(
1
s
∂⟨ϕ⟩FS
∂s

)
(9)

The shearing rate’s temporal evolution is depicted in
figures 8(a) and (b) in both situations. The time and radially
averaged shearing rate ωtot

E×B = ⟨⟨|ωE×B|⟩s⟩t is 0.00468Ωci for
circular equilibrium and 0.00479Ωci for shaped MHD equi-
librium (κ= 1.4), respectively, are shown with black dashed
line in figures 8(a) and (b), respectively. The subscripts s
and t indicate averages over radius (s ∈ [0.5 0.8]) and time
(t[Ω−1

ci ] ∈ [1.0× 105 2.0× 105]), respectively. The quantity

6
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Figure 4. (a) Electrostatic field energy and (b) Heat flux as a function of time t(Ω−1
ci ) for the three MHD equilibria under study. The mean

heat flux value, averaged over a suitable time window (dashed line), is shown in the label.

Figure 5. Spectral distribution of the electrostatic potential is plotted in the time averaged interval t[Ω−1
ci ] ∈ [1.0× 105 − 2.0× 105] among

different toroidal mode numbers n for both circular and shaped (κ= 1.4) cases for the nonlinear phase of the ITG-SWITG turbulence
simulation.

ωtotE×B is a measure of the total absolute value of the ZF shear-
ing rate. In the case of circular equilibrium, the ZF shearing
rate for the ITG-SWITG mode is slightly less as compared
to shaped MHD equilibrium (κ= 1.4). The dominant process

for saturating turbulence associated with the ITG-SWITG
mode involves ZFs, as evidenced by the observation that the
shearing rate surpasses the linear growth rate in both cases.
In order to compare the global mode structure as shown in

7
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Figure 6. Spatio-temporal contour plots of the turbulent energy (non-zonal component of electrostatic field energy), separately for the
circular (top panel) and shaped (κ= 1.4)(bottom panel) cases. Also shown are the radial plot of η = Ln/LT at initial (orange dashed line), at
t[Ω−1

ci ] = 5.0× 104 (white dashed line) and final (green dashed line) times. The factor 1.5× 104 is multiplied in the η profile for visibility.

Figure 7. 2D poloidal mode structure of the turbulence for the (a) circular and (b) κ= 1.4 equilibrium at the final time point in simulations.
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Figure 8. The time history of the E×B zonal flow shearing rate (ωE×B) for (a) circular and (b) κ= 1.4. The magenta dashed lines depict
the corresponding maximum linear growth rates for the ITG mode, i.e. 0.00217Ωci and 0.00205Ωci, respectively.

figures 7(a) and (b) quantitatively, the radial autocorrelation
function of electrostatic potential fluctuations (ϕ̃= ϕ−ϕn=0)
is calculated. The following definition is employed for the
autocorrelation function [47]:

C(∆t,∆r)

=

´
dt
´
dr⟨ϕ̃(t+∆t, r+∆r,φ+∆φ,θ = 0) ϕ̃(t, r,φ,θ = 0)⟩φ´

dt
´
dr⟨ϕ̃2 (t, r,φ,θ = 0)⟩φ

, (10)

where ⟨⟩φ represents the average in toroidal angle φ. The
correlation length is calculated as the full width at the half
maximum of C(∆t,∆r) taking the time average over a time
interval t(Ω−1

ci ) = 1.0× 105 − 2.0× 105. It can be seen from
figure 9(a), both cases (circular and shaped) show the quite
similar radial correlation lengths ∆r/ρs ∼ 3.9 and ∆r/ρs ∼
3.6 respectively. Therefore, the eddies size are almost sim-
ilar in both cases. The plot of probability density functions
(PDFs) of the fluxes associated to figure 4(b) are shown in
figure 9(b). From the figure 9(b), we see that both cases (circu-
lar and shaped) show normal (Gaussian) PDFs and the shapes
(and thus moments) of the flux PDFs are close to identical.
ZFs are known to play a significant role in the self-regulation
of turbulence in tokamaks [44, 48], and they remain undamped
in collisionless plasmas [49]. However, as reported in [50–52],
ZFs are damped by ion-ion collisions, indicating that collision-
ality can influence overall turbulence and transport. It would
be interesting to perform simulations including collisions and
make a qualitative and quantitative comparison of turbulent
fluxes, in cases without and with collisions.

4. Linear collisionless electrostatic simulation
studies of ITG coupled with kinetic electrons

In this section, linear collisionless electrostatic simulations
with kinetic ions and electrons for circular and shaped

equilibria are presented. Here, we use the MHD equilibrium
code CHEASE [28] to describe the equilibrium. The drift-
kinetic electron model is used to treat trapped and passing
electrons. The profiles that are considered in these simula-
tion are identical to that used for the adiabatic electron stud-
ies reported in the previous sections. The 3D grid resolution
used here is Ns×Nθ⋆ ×Nφ = 448× 1024× 512. The time
step is ∆t= 1.0Ω−1

ci , and the number of markers is Np =
200× 106. Figures 10(a) and (b) show the toroidal mode num-
ber n scans with kinetic electrons for circular (κ= 1.0) and
shaped (κ= 1.2 & κ= 1.4) cases. Both shaped cases have
a triangularity δ= 0.45. The inclusion of kinetic electrons
strongly enhances the ITG growth rate. The enhancement of
ITG growth rate in the presence of fully kinetic electrons is
explained as follows. The assumption of an adiabatic response
for passing electrons rests on the premise that these particles
possess sufficient mobility along magnetic field lines to main-
tain thermal equilibrium despite field fluctuations. This adia-
batic response holds as long as |ωr/k∥| ≪ vthe, wherein the
parallel phase velocity ωr/k∥ of ITG/TEM microinstabilit-
ies remains small compared to the electron thermal velo-
city vthe =

√
Te0/me. Here, k∥ denotes the component paral-

lel to the magnetic field of a given mode wave vector k, Te0
represents the equilibrium temperature of electrons, and me

stands for their mass. However, in proximity to mode rational
surfaces (MRSs) of low order-magnetic surfaces where the
safety factor qs is a low-order rational number (qs =−m/n
with m and n integers)-the validity of the adiabatic assump-
tion becomes questionable. Near suchMRSs, resonant Fourier
modes with poloidal and toroidal mode numbers (m, n) align
with magnetic field lines, yielding k∥ ≈ (nqs+m)/Rqs = 0.
Consequently, the associated parallel phase velocity ωr/k∥
surpasses the electron thermal velocity vthe within a radial
range δx around this surface [34, 53–56]. This violation of
the adiabatic response condition becomes apparent within

9
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Figure 9. (a) Radial autocorrelation functions computed from fluctuating electrostatic potential for circular and shaped (κ= 1.4 cases,
during the time period of t(Ω−1

ci ) = 1.0× 105 − 2.0× 105 and (b) The probability density function (PDF) of the heat flux for circular and
shaped (κ= 1.4) cases.

Figure 10. (a) Growth rate (γ) and (b) Real frequency (ωr) plots for circular (κ= 1.0) and shaped (κ= 1.2 & κ= 1.4) magnetic equilibria
for adiabatic electron (AE) and kinetic electron (KE) cases. The AE cases (also figure 2) are shown with open circles and dashed lines for
comparison.

this interval. When incorporating the fully kinetic response
of electrons, fine structures emerge in eigenmode configur-
ations near MRSs due to their non-adiabatic behavior. The
destabilization phenomena nearMRSs associatedwith passing
electron dynamics have been elucidated through a local dis-
persion relation [54]. It has been observed that within the
radial domain where fine structures linked to the non-adiabatic
response of passing electrons manifest, the growth rate pre-
dicted by the local dispersion relation markedly increases,
often by a factor of two or more, upon accounting for the
non-adiabatic electron response [24, 34, 53–55, 57, 58]. The
increase in the growth rate of the ITGmode due to the presence
of trapped electrons can be explained as follows. In a toroidal
plasma, a pressure perturbation on the outboard side creates
localized regions of higher and lower temperatures. The mag-
netic drift velocity of ions, which depends on temperature, var-
ies in these regions, causing fluctuations in local ion density.
This results in a potential perturbation and results in a corres-
ponding poloidal electric field. This electric field, in combin-
ation with the applied magnetic field, drives plasma particles

radially due to the E×B drift. When electrons are considered
adiabatic, themoment charge separation is produced, adiabatic
electrons neutralize the space charge, preventing or reducing
the buildup of E×B advection. However, in a toroidal geo-
metry, the 1/R dependence of magnetic field, results in some
electrons being ‘trapped’ in regions of weaker magnetic field.
These trapped electrons cannot respond adiabatically to neut-
ralize the charge separation, allowing the mode to grow for a
finite time [18, 59]. Therefore, the ITG growth rate increases in
the presence of trapped electrons. In a high n region, the ITG
mode is stabilized by the finite Larmor radius (FLR) effect,
and dominant. This is likely the TEM, but a proper treat-
ment of collisions, for example, is necessary to characterize
the mode. In the ADITYA-U experimental shot under invest-
igation, the normalized electron and ion collisionality defined
as the ratio between the detrapping collision frequency and
the bounce frequency [60–62] (ν∗i,e =

qR0

ϵ3/2τii,eivTi,e
), ν∗i ∼ 2.5 &

ν∗e ∼ 3.4, ν∗ ∼ 2.5− 3.4. Here, q is the safety factor, R0 is
the major radius, ϵ is the local inverse aspect ratio, vTe and
vTi are the electron and ion thermal velocity τ ii is the ion-ion
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Figure 11. (a) Growth rate (γ) and (b) Real frequency (ωr) plots for circular (κ= 1.0) and shaped (κ= 1.2 & κ= 1.4) magnetic equilibria
for kinetic electron (KE) cases as a function of the effective poloidal wave number kθρs/κ.

collision time and τ ei is the electron-ion collision time. At
such high values of collisionality (ν∗ ≫ 1), it is likely that the
TEM will be suppressed in more complete gyrokinetic sim-
ulations with collisions included [14, 15, 63]. Therefore, we
speculate that at high toroidal wavenumbers, the ETG may
be the relevant mode. For our present parameters and pro-
files, we believe that these modes are not ETG. In order to
verify that the high n modes are indeed TEM, separate simu-
lations are conducted (not shown here) using the hybrid elec-
tron model, that contains the effect of trapped electrons only.
If these modes were ETG, the growth rates of the high n
modes, calculated from the hybrid electron model are expec-
ted to very weak. However, on the contrary, we observe strong
growth rates at high nmodes. This corroborates that the high n
modes are TEM. Therefore, in the limit of the current simula-
tions with no collisions and ion-scale wavenumbers, the mode
propagating in the electron diamagnetic direction is the TEM.
Both figures 10(a) and (b) illustrate alterations not only in fre-
quency and growth rate values but also in the transition trends
from ITG to Trapped Electron Mode (TEM), which vary with
different elongations. In the scan of elongation parameter κ,
higher κ values stabilize TEMs by reducing the effective tem-
perature gradient across the magnetic flux surface. The global
ITG-TEM mode experiences an effective temperature gradi-
ent, which is reduced due to the extension of plasma shape
in the vertical direction. This modification is expressed as
R(1−E ′)

LT
, where E ′ = r(κ− 1)/(κ+ 1) and r denotes the mag-

netic surface label coordinate [25]. These findings are consist-
ent with prior literature discussing the global impact of elong-
ation on ITG/TEM through gyro-kinetic simulations [23–25].
A higher elongation leads to a decrease in frequency and an
increase in the transition toroidal wave number n, marking the
point where the ITG mode transitions to TEM. Examining the
growth rate, figure 10(a) reveals that as elongations increase,
the highest growth rate of the ITG branch is weakly affected.
Simultaneously, the overall spectrum widens, with the max-
imum growth rate shifting to higher n (smaller scales) [23,
24]. This observation aligns with the previously discussed
elongation effect on the ITG mode with adiabatic electrons in
section 3.1.

The influence of elongation is also explained through the
concept of ‘effective poloidal wavenumber’ (where elonga-
tion causes a contraction in poloidal wavelength by a factor
of 1/κ on the low field side) [23, 24]. In a simplified case
with zero triangularity and no Shafranov shift, the relationship
between the effective poloidal wavenumber k ′θ and the con-
ventional one kθ can be expressed as k ′θ ∼ kθ/κ, derived from
analytical equilibrium [23]. When the growth rates are replot-
ted with respect to the effective poloidal wavenumber kθ/κ, as
depicted in figure 11, the three cases exhibit good agreement.

The top panel (kinetic circular equilibrium) of figure 12
shows 2D poloidal mode structures of electrostatic potential
in the (R,Z) plane. In the enlarged view of the n= 95 and
n= 105 modes, we can see a signature of two distinct struc-
tures. It is likely that the ITG and TEM instability co-exists,
but we expect that with time only the dominant mode sur-
vives. As depicted in bottom panel of figure 12(d) for tor-
oidal mode number n= 105, the presence of non-adiabatic
passing electrons results in the emergence of shorter scales
in the mode structures. These electrons near the k∥ = 0 sur-
faces, are unable to suppress charge separation by following
the field lines. Consequently, at these surfaces, the charge sep-
aration leads to a more pronounced E×B drift and heightened
instability [18]. As a result, the linear mode structure under-
goes a breakdown into shorter length scales.

5. Summary

Effects of magnetic equilibrium shaping (elongation and tri-
angularity) have been performed on ITG-SWITG modes in
ADITYA-U tokamak. From the linear results, we see that
growth rate and real frequency are reduced with magnetic
shaping and growth rate is shifted towards higher toroidal
wave number. From the nonlinear results, we see that heat flux
is reduced a little with magnetic shaping as compared to circu-
lar case. Linear collisionless electrostatic simulation studies of
ITG coupled with kinetic electrons have also been performed.
The results indicate that growth rate and real frequency of the
ITGmode are significantly increased in the presence of kinetic
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Figure 12. The top panel shows poloidal mode structures of the electrostatic potential in the (R,Z) plane for kinetic electron simulations for
the circular equilibrium, from left to right, toroidal mode numbers (a) n= 25 & (b) n= 95 and a zoomed-in image of the n= 95 mode.
Bottom panel shows the mode structures of the electrostatic potential in the (R,Z) plane for kinetic electron simulations for the shaped
equilibrium (κ= 1.4), from left to right, toroidal mode numbers (c) n= 25 & (d) n= 105 and a zoomed-in image of the n= 105 mode. All
the mode structures are plotted here at the final time of simulation.

electrons. At higher toroidal mode numbers, a mode is found
to be propagating in the electron diamagnetic direction. This
is the TEM, but a proper treatment of collisions, for example,
is necessary to characterize the mode in ADITYA-U. Robust
nonlinear simulations with kinetic electrons is resource intens-
ive (∼106 CPU-hours per simulation) and our future work
therefore aims to first understand the importance of collisions
and electromagnetic effects. Collisions will impact trapped
particles and therefore any TEM-like mode, whereas the inclu-
sion of finite β could strongly impact the ITG through β ′ sta-
bilization. Another approach may be to quantify the import-
ance of global effects by comparing against flux tube codes
(such as GENE, GKW) for the well understood adiabatic elec-
tron case and utilizing these far less computationally demand-
ing tools for more complete kinetic studies. It is important to
note that, the collisions can reduce the magnitude of ZF which
can enhance the ITG turbulence, and hence transport level.
Also, with fully kinetic electron model, study of ETG mode at
higher toroidal mode numbers is an interesting study. We aim
to carry out simulations along this line in future publications.
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