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1. Introduction

A neoclassical tearing mode (NTM) is an example of a resis
tive magnetohydrodynamic (MHD) instability present in a 
tokamak plasma. NTMs are characterized by the evolution 
of a magnetic island chain, which arises from a filamentation 
of the component of the plasma current density parallel to 
the magnetic field lines on a rational surface. The change in 
magn etic topology enhances the transport of particles and heat 
across the island width, as they stream along the perturbed 
magnetic field lines. Consequently, in the absence of particle/

heat sources and particle drifts, the radial pressure gradient is 
flattened across the island width. This not only degrades the 
plasma confinement by lowering the pressure in the core of 
the plasma, but a large NTM can trigger a disruption. Major 
disruptions can do significant damage in future larger toka
maks such as ITER; it is therefore crucial to control or avoid 
NTMs.

The evolution of a magnetic island can be described by the 
modified Rutherford theory. According to the original theory 
[1], the stability of an island depends on the tearing param
eter, ∆′, which is a measure of the free energy available in 
the current density for magnetic reconnection. In the modified 
theory incorporating toroidal geometry, a localized perturba
tion in the parallel current profile is also considered. One such 
contribution comes from the bootstrap current, which tends 
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is maintained across the magnetic island, suppressing the bootstrap current drive for the 
neoclassical tearing mode (NTM) growth. As w → 0, the ions are largely unperturbed. 
However, the electrons respond to the electrostatic potential required for quasineutrality 
and this provides a stabilizing contribution to the NTM evolution. This gives a new physical 
understanding of the NTM threshold mechanism, with implications for the design of NTM 
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to be removed from the island region where the pressure gra
dient is flattened. This perturbation in the bootstrap current 
typically reinforces the original filamentation in the current 
density profile, which enhances the island growth [2, 3]. This 
enhanced island growth mechanism, provided by the per
turbed bootstrap current, is what characterizes a neoclassical 
tearing mode. Because this bootstrap current contribution 
(which we label ∆bs) scales as 1/w, where w is the island half
width, this theory predicts that all seed islands, however small, 
would grow to a large saturated island (assuming a negative 
∆′). If this were the only contribution to the island evolution, 
then it would pose significant challenges for achieving fusion 
in a tokamak, as all plasma discharges would suffer from 
such tearing instabilities. However, experimental observations 
point to the existence of a threshold effect [4, 5], whereby a 
sufficiently small seed island heals itself and shrinks away. 
One of the possible origins of this threshold is the finite radial 
transport effect [6–8]. This effect partially restores the pres
sure gradient that is flattened across the island width, which 
reduces the bootstrap current drive for the island growth. 
Then, the growth of an island with a width comparable to or 

smaller than wχ/r = (εnLq/r)−1/2(χ⊥/χ‖)
1/4  is suppressed, 

and can be stabilised for negative ∆′. Here, ε = r/R is the 
inverse aspect ratio, r and R are minor and major radii of  
the torus respectively, n is the toroidal mode number, Lq is the 
magnetic shear length scale and χ⊥,‖ are perpendicular and 
parallel thermal conductivities, respectively.

Another candidate for producing a threshold is the polari
zation current, which is induced when the island chain prop
agates through the plasma with a characteristic frequency, ω . 
In slab geometry, the finite Larmor radius (FLR) effect sets the 
length scale where the polarisation current becomes relevant. 
When w is comparable to the ion Larmor radius, ρLi, the dif
ference in the responses of ions and electrons to the rotating 
island gives rise to an electrostatic potential. The difference in 
the gyroaveraged E × B drifts then leads to the polarization 
current, which in turn generates a parallel return current, δJ‖, 
to ensure ∇ · J = 0. This δJ‖ then contributes to the magnetic 
island evolution through the modified Rutherford equation. 
Previous works [9–12] have shown that there exists a narrow 
boundary layer current in the vicinity of the island separatrix, 
whose contribution to the island evolution is opposite but com
parable in magnitude to that from outside the boundary layer. 
Whether or not the polarization current contribution is stabi
lizing depends on the relative sizes of the two contributions.

In toroidal geometry, the combination of gradB and curva
ture drifts causes orbits of passing particles (those completing 
full poloidal orbits) to stray from a reference flux surface by 
a distance of O(ερθ), where ρθ is the poloidal Larmor radius. 
In addition, because of the variation in the magnetic field 
strength, a fraction of particles are trapped on the outboard 
side of the tokamak. They execute closed bananashaped 
orbits, whose width is given by ρb ∼

√
ερθ. The trapped 

ions experience a different orbitaveraged E × B drift to the 
trapped electrons, which results in a net current: the neoclas
sical polarization current [13–16]. Its contribution to the island 
evolution (which we label ∆pol) can be substantial when w 

is comparable to the ion banana width, ρbi. Previous works  
[14, 17] based on drift kinetic theory in toroidal geometry 
have shown that ∆pol ∝ 1/w3, when ρbi � w. If this contrib
ution is stabilizing, then it could heal small seed islands, thus 
providing the threshold.

One way of controlling NTMs is to use electroncyclotron 
current drive (ECCD) [18, 19]. An ECCD system can suppress 
the NTM growth by driving a plasma current in the vicinity 
of the island, effectively replacing the missing bootstrap cur
rent in the region. If the island width can be reduced to below 
the threshold width, then the island will shrink away and the 
NTM will be successfully suppressed. The effectiveness of 
the ECCD has been demonstrated in a number of tokamaks 
[20–23], and it is currently the favoured method of control
ling NTMs in ITER [24]. However, the power consumption of 
the ECCD system is rather high. It is therefore crucial to use 
it as efficiently as possible, if we are to achieve a high fusion 
Qfactor in future experiments [25]. Here, Q is the ratio of 
fusion power to the heating power injected into the plasma. 
This is why the understanding of the NTM threshold physics, 
including the predictive capability for the threshold island 
width, is so crucial.

Taking into account these contributions, the modified 
Rutherford equation  describing the island evolution can be 
represented in the following form:

τR

r2

dw
dt

= ∆′(w) + a1ε
1/2 Lq

Lp

βθ

w
w2

(w2 + w2
χ)

+ a2g(ε, νii)

(
Lq

Lp

)2
βθ

w

(ρbi

w

)2
+∆ECCD,

 

(1)

where τR is the resistive time scale, βθ = 2µ0p/B2
θ, p  is the  

plasma pressure, Bθ is the poloidal component of the 
magnetic field, Lq = q(dq/dr)−1, q is the safety factor, 
Lp = −p(dp/dr)−1, g(ε, νii) describes the collision frequency 
dependence [17], and a1,2 are numerical constants. The terms 
in a1 and a2 correspond to the bootstrap current (∆bs) and 
polarization current (∆pol) contributions, respectively, while 
∆ECCD describes the impact the ECCD system has on the 
island evolution. As mentioned above, an efficient deployment 
of the control system requires a better understanding of the 
threshold physics. In particular, the ability to quantitatively 
predict the threshold island width wc (for which dw/dt = 0), 
below which the island shrinks away, is essential. Existing 
theory relies on the assumption ρbi � w, i.e. valid in the limit 
of large island widths compared to the ion banana width. 
However, observations [26] show that the threshold island 
width is often comparable in size to the ion banana width; 
precisely the regime where this assumption breaks down. A 
new theory is therefore required to accurately determine the 
relative sizes of the ∆bs, ∆pol  and ∆′ contrib utions, including 
their dependence on the curvature and finite particle orbit 
width effects. This will allow us to quantitatively predict the 
threshold width for ITER.

This paper focuses on the effect of finite ion orbit width on 
the bootstrap current contribution to the magnetic island evo
lution, by considering a stationary island relative to the plasma. 
We extend the existing drift kinetic theory [14] to describe the 
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ion response to the island perturbation. Crucially we relax 
the small bananawidth assumption, and consider magnetic 
islands whose widths are comparable to the ion banana width: 
w ∼ ρbi. We consider a small magnetic island w � r  (valid for 
an island with a width close the threshold width), which allows 
us to treat the plasma as toroidally symmetric to leading order. 
Then, because of the finite orbit width effect the ion distribu
tion function is no longer a function of poloidal magnetic flux 
ψ, but of toroidal canonical angular momentum:

pφ = (ψ − ψs)−
Iv‖
ωci

, (2)

which is conserved along the orbits in an axisymmetric 
plasma. Here, ψs  is the poloidal flux at the rational surface 
where the island is located, I = RBφ, Bφ is the toroidal 
component of the magnetic field, v‖ is the component of 
the particle velocity along the field lines and ωci  is the ion 
gyrofrequency. For electrons, the assumption ρbe � w is still 
valid, which allows us to use the existing analytic solutions 
for the electron distribution function of [14]. However, in the 
regime ρbe � w ∼ ρbi , we anticipate a notable difference 
in the electron and ion distribution functions, if we neglect 
the electrostatic potential, Φ. It is therefore important to cal
culate Φ selfconsistently from quasineutrality, which we 
incorporate into our analysis. From the particle responses, 
we determine the full contribution of the localized current 
perturbation (which includes the perturbed bootstrap current) 
to the island evolution, including those from inside the island 
and the separatrix layer (previously assumed to be zero, with 
perfectly flat pressure gradient inside the island separatrix). 
Earlier works considered the limit w ∼ ρbi by employing a 
particleincell (PIC) simulation to solve the drift kinetic 
equation  [27], or approached the problem analytically by 
focusing on the contribution from the passing particles only 
[28]. They found that an ion density gradient is supported 
across the island, but did not address the consequences this 
has for quasineutrality and the electron response. Our ana
lytic approach reveals the physics explanation for the density 
gradient, and provides a new threshold physics effect that 
results from the electron response.

This paper is organized as follows. In section 2, we intro
duce the perturbed magnetic geometry and drift kinetic equa
tion, followed by section  3 outlining the analytic electron 
response, as derived in [14]. Electron flow depends on the 
ion counterpart through the model collision operator, and 
hence is worthwhile revisiting here. In section 4, we derive 
the orbitaveraged equation describing the ion response and 
first consider the solution in the collisionless limit, where we 
introduce the concept of ‘drift islands’ in shifted flux space 
(section 4.1). This aids the understanding of solutions of 
the full equations, including the collisional effects. This is 
followed by section  4.2, describing the analysis of the full 
solution for the ion distribution function, perturbed density 
and parallel flow profile. Finally, in section 5 we determine 
the layer current contribution to the island evolution, ∆′

loc, 
for a range of values of ρθi  and w. Conclusions are drawn in 
section 6.

2. Magnetic island geometry and drift kinetic 
equation

We consider a large aspect ratio, circular crosssection 
tokamak, neglecting the Shafranov shift. Then, in the orthog
onal coordinate system ∇φ×∇ψ = rBθ∇θ, where ψ is the 
poloidal magnetic flux, θ is the poloidal angle and φ is the 
toroidal angle, the equilibrium magnetic field is given by:

B0 = I(ψ)∇φ+∇φ×∇ψ. (3)

Here, I(ψ) = RBφ and Bθ and Bφ are the poloidal and toroidal 
components of the magnetic field respectively. A magnetic 
perturbation of the form satisfying Maxwell’s equation  is 
introduced:

B1 = ∇× (A‖b0), (4)

where b0 = B0/B0 is the unit vector in the direction of the 
equilibrium field lines, and the parallel vector potential takes 
the form:

A‖ = − ψ̃

R
cos ξ, (5)

assuming a single dominant helicity perturbation. Here, ξ is 
the helical angle in the island rest frame:

ξ = m
(
θ − φ

qs

)
, (6)

where m is the poloidal mode number, qs = m/n is the safety 
factor at the rational surface where the island is located (all 
quantities with subscript s are those evaluated at the rational 
surface, unless otherwise indicated), and n is the toroidal 
mode number. ψ̃ = (w2

ψ/4)(qs/q′
s) describes the perturbation 

amplitude (the prime denoting a differential with respect to 
ψ), and wψ is the island halfwidth in ψspace. It is also con
venient to introduce a perturbed flux function Ω that describes 
the magnetic island geometry, which satisfies: B ·∇Ω = 0. 
That is, the perturbed magnetic field lines lie in surfaces of 
constant Ω. The form of Ω is then given by:

Ω =
2(ψ − ψs)

2

w2
ψ

− cos ξ, (7)

with Ω = 1 defining the island separatrix.
Working in the island rest frame, we consider a steady state 

ion response to the magnetic island perturbation, using the 
drift kinetic equation:

v‖∇‖fj + vE ·∇fj + vb ·∇fj

−
ej

mjv
(
v‖∇‖Φ+ vb ·∇Φ

) ∂fj
∂v

= Cj( fj)
 (8)

for a particle species j . Here, ‖ denotes a comp
onent parallel to the magnetic field lines, 
∇‖ = b ·∇, b = B/B, vE = (B ×∇Φ)/B2 is the E × B 
drift, vb = −v‖b ×∇(v‖/ωcj) is the combination of gradB 
and curvature drifts, ωcj = ejB/mj  and ej  and mj  are the par
ticle charge and mass respectively. Φ is the perturbed electro
static potential to be determined from quasineutrality, and Cj  
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is the momentumconserving model collision operator [29]. 
Likelike particle and electron–ion collision operators are 
respectively given by:

Cjj( f ) = 2νjj(v)
[√

1 − λB
B

∂

∂λ

(
λ
√

1 − λB
∂f
∂λ

)
+

v‖ū‖j

v2
thj

FMj

]
,

 
(9)

Cei( f ) = 2νei(v)
[√

1 − λB
B

∂

∂λ

(
λ
√

1 − λB
∂f
∂λ

)
+

v‖u‖i

v2
the

FMe

]
,

 

(10)
where the λ differentials are taken at fixed ψ,

νjj(v) = ν̃jj
φ(v̂)− G(v̂)

v̂3
 (11)

is the deflection frequency, v̂ = v/vthj, v2
thj = 2Tj/mj  and ν̃jj is 

the Coulomb collision frequency. Here,

φ(X) ≡ 2√
π

∫ X

0
e−t2

dt,

G(X) ≡ φ(X)− Xφ′(X)
2X2 , φ′ =

dφ
dX

.

In equation (9), we have also introduced:

ū‖j( f ) =
1

n 〈νjj〉v

∫
dv3 νjjv‖f , (12)

which is required for momentum conservation, and

〈νjj(v)〉v =
8

3
√
π

∫ ∞

0
dv̂ v̂4e−v̂2

νjj(v̂).

In equation  (8), spatial derivatives are taken at constant 
kinetic energy, E = v2/2, and magnetic moment, µ = v2

⊥/2B, 
where ⊥ denotes a component perpendicular to magnetic field 
lines. Working in (v,λ) velocity coordinates, where λ = µ/E 
is the pitch angle, the velocity space integral is:

∫
d3v = πB

∑
σ

∫ ∞

0
v2 dv

∫ B−1

0

dλ√
1 − λB

, (13)

where σ is the sign of parallel velocity, v‖ = σv
√

1 − λB.

3. Electron response

In order to calculate the perturbed bootstrap current and its 
contribution to the magnetic island, we require both the ion 
and electron parallel flows. For electrons, we can exploit the 
fact that the electron poloidal Larmor radius is usually small 
compared to the magnetic island width, even when the ion 
poloidal Larmor radius is comparable to the island width (i.e. 
ρθe � ρθi ∼ w). Then, we are justified in using the analytic 
results for the electron response, derived in [14]. As can be 
seen from equation (10), the electron parallel flow is depen
dent on the ion counterpart through momentum conservation, 
so the two species are coupled.

We seek a Maxwellian solution for the electrons, expanding 
the distribution function about the rational surface in the limit 
of a small island w � r :

fe =
(

1 +
eΦ
Te

)
FMes + (ψ − ψs)F′

Mes + ge, (14)

where  −e is the electron charge, ge describes the perturbation 
in the electron distribution function,

FMj =
n0(ψ)

π3/2v3
thj

e−v2/v2
thj (15)

is the Maxwellian for species j  and n0 is the equilibrium den
sity. Introducing two small parameters δe = ρθe/w and ∆/r , 
we expand the perturbation term:

ge =
∑

l,k

δl
e∆

kg(l,k)
e (16)

and determine the leadingorder response of electrons to the 
island. Then, considering relevant order contributions to the 
drift kinetic equation (8), the solution for the electron distribu
tion function retaining O(∆) and O(δe∆) (N.B. ge/FMe ∼ ∆), 
is [14]

fe =
(

1 − eeΦ

Te

)
FMes + h(Ω)F′

Mes −
Iv‖
ωce

F′
Mes

∂h
∂ψ

+ h̄e,
 

(17)

where

h(Ω) = Θ(Ω− 1)
wψ

2
√

2

∫ Ω

1

dΩ′

Q(Ω)
,

Q(Ω) =
1

2π

∮ √
Ω+ cos ξ dξ

 

(18)

h(Ω) describes the perturbed radial density profile in the 
vicinity of the magnetic island. In the absence of the drift 
effects, the gradient would be completely flat inside the 
island separatrix, Ω < 1 (note the Heaviside function in 
equation (18)).

h̄e in equation (17) is determined from a constraint equa
tion derived from the O(δe∆) contribution to the drift kinetic 
equation, which takes the form:

Rqk‖

[
4

w2
ψ

dh
dΩ

∂ψ

∂ξ

∣∣∣∣
Ω

F′
MesI

〈
v‖
ωce

〉

θ

+
∂h̄e

∂ξ

∣∣∣∣
Ω

]

+
4

w2
ψ

dh
dΩ

∂ψ

∂ξ

∣∣∣∣
Ω

F′
MesI

∂

∂ψ

〈
v‖

ωce

〉

θ

qs

q′s

−
〈

Rq
v‖

Ce(g(1,0)
e

〉

θ

= 0,

 

(19)

where g(1,0)
e  is the last two terms of equation (17):

g(1,0)
e = −

Iv‖
ωce

F′
Mes

∂h
∂ψ

+ h̄e.

Equation (19) can be solved analytically in the collisionless 
limit, when the term in the collision operator is negligible. 
Solving (19) for h̄e yields:
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h̄e =− 4
w2
ψ

dh
dΩ

F′
MesI

[〈
v‖
ωce

〉

θ

+
qs

q′s

∂

∂ψ

〈
v‖

ωce

〉

θ

]

× (ψ − 〈ψ〉Ω) + He(Ω),
 

(20)

where 〈· · · 〉θ denotes an integral over a period in θ for passing 
particles and between the bounce points, multiplying the 
result by σ and summing over σ for trapped particles. 〈· · · 〉Ω 
denotes a flux surfaceaverage:

〈· · · 〉Ω =

∮
· · · [Ω + cos ξ]−1/2 dξ∮
[Ω + cos ξ]−1/2 dξ

. (21)

He(Ω) is a free function satisfying:
〈〈

Rq
v‖

Ce(g(1,0)
e

〉

θ

〉

Ω

= 0.

Solving for He using the result for h̄e from equation (20), and 
integrating over velocity space, the result for the flux surface
averaged electron parallel flow is:
〈〈

Bu‖e
〉
θ

〉
Ω

B0vthe
= − ft

(1 + ft)
Ivthe

ωce

n′

n

(
1 + ηe +

1
2

kfcηe

)〈
∂h
∂ψ

〉

Ω

+
fc

(1 + ft)

〈〈
Bu‖i

〉
θ

〉
Ω

B0vthe
,

 

(22)

where f t and f c are trapped and passing particle fractions 
respectively and k � −1.173 [30]. (Hydrogenic, quasineutral 
plasma is assumed for simplicity.) We interpret the flux sur
faceaveraged parallel flow as the component of the flow that 
gives rise to the bootstrap current (see equation  (35) later). 
This result for the electron parallel flow will be used in sec
tion 5 to calculate the perturbed bootstrap current, as well as 
its contribution to the island evolution.

4. Ion response

For ions, we relax the assumption of small ion poloidal 
Larmor radius relative to the island width and consider an 
arbitrary ratio ρθi/w, which is the critical difference from the 
treatment of electrons in the previous section and past analytic 
works [14, 17]. Taylorexpanding the Maxwellian about the 
rational surface where the island is located (ψ = ψs) in the 
small island limit w � r , we seek a solution to the ion distri
bution function in the vicinity of the magnetic island:

fi =
(

1 − ZeΦ
Ti

)
FMis + (ψ − ψs)F′

Mis + gi. (23)

Using the parameter ∆ = w/r � 1, this time we expand the 
perturbation in the ion distribution function in terms of ∆ 
only, retaining the ordering ρθi ∼ w:

gi =
∑

k

∆kgk. (24)

When ρθi ∼ w, both parallel streaming and magnetic drift 
dominate the ion response. Then, the leading order contrib
utions to the drift kinetic equation (8) are:

v‖

Rq

[
∂g0

∂θ

∣∣∣∣
ψ

+ I
∂

∂θ

(
v‖

ωci

)
∂g0

∂ψ

]

= −
Iv‖

Rq
∂

∂θ

(
v‖
ωci

)
ωT
∗i

ω∗i

n′

n
FMi,

 

(25)

where ω∗i = mcTin′/Zeqn is the ion diamagnetic frequency, 
ωT
∗i/ω∗i = 1 + (v2/v2

thi − 3/2)ηi and ηi = (T ′
i /Ti)/(n′/n).

In the limit of a small island perturbation, the toroidal 
symmetry is approximately conserved to the leading order in 
∆. Then the toroidal canonical momentum (2) is a conserved 
quantity along particle orbits, which we can utilize as a radial 
coordinate in place of ψ. As we shall see, this allows us to 
eliminate one of the spatial coordinates, θ. Thus, transforming 
from radial variable ψ to pφ, equation (25) simplifies to:

v‖
Rq

∂g0

∂θ

∣∣∣∣
pφ

= −
Iv‖

Rq
∂

∂θ

(
v‖

ωci

)∣∣∣∣
pφ

ωT
∗i

ω∗i

n′

n
FMi, (26)

which can straightforwardly be integrated to yield:

g0 = −
Iv‖
ωci

ωT
∗i

ω∗i

n′

n
FMi + h̄0(pφ, ξ, v), (27)

where the free function, h̄0, is determined from the next order 
equation. This allows us to write the total distribution function 
as a function of pφ instead of ψ:

fi =
(

1 − eiΦ

Ti

)
FMis + Ḡ0(pφ, ξ, v), (28)

where

Ḡ0 = pφ
ωT
∗i

ω∗i

n′

n
FMi + h̄0. (29)

The physical meaning of this is that the distribution function is 
a constant on the orbits the particles freestream along, rather 
than being a flux surface quantity. These orbits are described 
by pφ = constant (i.e. the standard neoclassical orbits for a 
toroidally symmetric system). h̄0 then describes the modifi
cation to the equilibrium profile of the distribution function, 
when the island perturbation is introduced. We see later that 
the finite orbit width effect has a profound impact on the per
turbed density profile in the vicinity of a magnetic island.

We now proceed to the O(∆) contribution to the drift 
kinetic equation (8):

v‖

Rq
∂g1

∂θ

∣∣∣∣
pφ

−
mv‖
Rq

I
∂

∂ψ

(
v‖

ωci

)
∂Ḡ0

∂ξ

+
mv‖
Rq

[(
1 − q

qs

)
∂Ḡ0

∂ξ
+ ψ̃ sin ξ

∂Ḡ0

∂pφ

]

+
1
q

∂Φ

∂θ

∣∣∣∣
pφ

∂Ḡ0

∂pφ

+
m
q

[
∂Φ

∂ψ

∂Ḡ0

∂ξ
− ∂Φ

∂ξ

∂Ḡ0

∂pφ

]
= Cii(Ḡ0),

 

(30)

where Cii is given by equation (9). To eliminate the term in 
g1, we take the average of equation (30) along particle orbits,  
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at fixed pφ. For passing particles, this is achieved by multi
plying equation (30) by Rq/v‖ and integrating over a period in 
θ at fixed pφ, making use of the periodicity in g1. For trapped 
particles, the distribution functions at the bounce points  
satisfy: g1(σ = +1, θb = ±1) = g1(σ = −1, θb = ±1), by 
conservation of particles. Thus, the term in g1 for trapped 
particles can be eliminated by multiplying equation  (30) by 
Rq/|v‖|, summing over σ and then integrating with respect 
to θ between the bounce points. The result is a particle orbit
averaged equation for h̄0 (through Ḡ0):

m

[〈
1 − q

qs

〉

θ

−
〈

I
∂

∂ψ

(
v‖
ωci

)〉

θ

+

〈
R
v‖

∂Φ

∂ψ

〉

θ

]
∂Ḡ0

∂ξ

+ m

[
ψ̃ sin ξ −

〈
R
v‖

∂Φ

∂ξ

〉

θ

]
∂Ḡ0

∂pφ
=

〈
Rq
v‖

Cii(Ḡ0)

〉

θ

,

 

(31)
where

〈f (ψ)〉θ =

{
1

2π

∮
f (ψ̂) dθ ( passing particles),

1
2π

∑
σ σ

∫ +θb

−θb
f (ψ̂) dθ (trapped particles),

where ψ̂ = pφ + Iv‖(θ)/ωc. Note that these θ integrations on 
the ion equation  are performed at fixed pφ, while those for 
electrons were at fixed ψ.

Since we are concerned with a Maxwellian solution in the 
vicinity of the island (the equilibrium profile is assumed far 
away from the island), we consider, for simplicity, a large 
aspect tokamak with B = 1 − ε cos θ. The first line of equa
tion  (31) can then be expanded about the rational surface. 
Then, introducing normalized quantities:

x =
ψ − ψs

ψs
, y = λBmax, v̂ =

v
vthi

, p̂ =
pφ
ψs

,

b =
B(θ)
Bmax

=
1 − ε cos θ

1 + ε
, L̂−1

q =
ψs

qs

dq
dψ

∣∣∣∣
s
,

L̂−1
n =

ψs

n
dn
dψ

, L̂−1
B =

ψs

B
∂B
∂ψ

, ŵ =
w
rs

, ρ̂θi =
ρθi

rs
,

Φ̂ =
eiΦ

Ti
, ν̂ii =

Rq
vthi

νii,

ω̂D =
σv̂

(1 + ε)

[
1
L̂q

〈√
1 − yb

b

〉

θ

−1
2

〈
1

L̂B

(2 − yb)
b
√

1 − yb

〉

θ

]
,

we obtain the dimensionless equation for Ḡ0:

− m

[
p̂
L̂q

Θ(yc − y) + ρ̂θiω̂D − ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂x

〉

θ

]
∂Ḡ0

∂ξ

∣∣∣∣
p

+ m

[
ŵ2

4L̂q
sin ξ Θ(yc − y)− ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂ξ

〉

θ

]
∂Ḡ0

∂p̂

=

〈
1
v̂‖

Ĉii(Ḡ0)

〉

θ

.

 

(32)

Here, Ĉii = (Rq/vthi)Cii and y c  =  1 corresponds to the 
trapped/passing boundary in the pitch angle space. Before 
solving equation (32) in full, in the next section we consider 
the form of the solution in the collisionless limit.

4.1. Collisionless limit

In section  2 we introduced the perturbed flux function Ω 
describing the magnetic island geometry (see equation  (7)). 
The perturbed magnetic field lines lie in the surfaces of con
stant Ω. In our present analysis, we introduce a new set of 
surfaces defined by S:

S =
ŵ2

4L̂q




2
(

p̂ − ρ̂θiω̂DL̂q

)2

ŵ2 − cos ξ


Θ(yc − y)

− p̂ρ̂θiω̂DΘ(y − yc)−
1
2

〈
ρ̂θi

v̂‖
Φ̂

〉

θ

.

 

(33)

Note that, for Φ̂ = 0 and y   <  y c (passing particles) the con
stant S surfaces are identical to the constant Ω surfaces, but 
shifted radially by an amount proportional to ρθi . This shift 
can be attributed to the term in ρ̂θiω̂D in equation (33) and the 
second term of pφ (see equation (2)). Working with S as the 
new ‘radial’ coordinate, we can further simplify equation (32) 
for Ḡ0, which now takes the form:

− m

[
p̂
L̂q

Θ(yc − y) + ρ̂θiω̂D − ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂x

〉

θ

]
∂Ḡ0

∂ξ

∣∣∣∣
S

=

〈
1
v̂‖

Ĉii(Ḡ0)

〉

θ

,

 

(34)

where it should be noted that the differential with respect to ξ 
is now taken at fixed S. This illustrates that the streamlines lie 
in surfaces of constant S, not constant Ω. They differ because 
of the particle orbits—the radial shift of the ‘drift island’ of 
the constant S contours relative to the magnetic island is due 
to the gradB and curvature drifts, while the term in Φ arises 
from E × B drifts. A similar radially shifted structure has 
been found for the ion flux, which originates from the addi
tional guiding centre drift caused by the electrostatic potential 
perturbation in the vicinity of the magnetic island [31].

In figure  1 we show the contour plot of the S profile in 
the x − ξ  plane, for ŵ = ρ̂θi = 0.02, L̂q = 1.0, λ/λc = 0.1, 
v̂ = 1.0, ε = 0.1, and v‖ > 0 (likewise for all subsequent fig
ures, unless otherwise indicated). The magnetic island itself 
is centred about x  =  0. It is clear that the constant S surfaces 
have the same structure as that of the magnetic island geom
etry (i.e. constant Ω surfaces), but are radially shifted by O(ρθi). 
In the absence of the electrostatic potential term, this shift is 
equal and opposite for the v‖ < 0 case. We call this shifted 
island structure in S the ‘drift island’, whose physical conse
quence is paramount. In the low collision frequency limit, 
where we may assume that the term on the right hand side of 
equation  (34) becomes O(νiiRq/vthi),� 1 smaller, it can be 
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shown straightforwardly that the solution for Ḡ0 is a function S: 
Ḡ0 = Ḡ0(S, v). That is, the constant S surfaces are also constant 
Ḡ0 surfaces, meaning the region over which the radial gradient 
of the distribution function is flattened is also shifted to coincide 
with the drift islands rather than the magnetic island. Because 
the shifts in the distribution function are in opposite directions 
for σ = +1 and σ = −1, when the perturbed density is con
structed by a velocity integral summing over σ, a substantial 
radial gradient is supported inside the island when w ∼ ρθi. 
For a large island, w � ρθi, the shifts are relatively small and 
the density moment is then approximately flattened across the 
island, as expected. This is what we call the finite orbit width 
effect, which is distinct from the well known radial transport 
effect [6]. It lies at the heart of the restored density gradient 
found in the PIC simulations of [27]. In the next section, we 
demonstrate this effect with the full solution to equation (32), 
as well as discuss the consequences for the parallel flow profile 
and hence the impact on the current and island evolution.

4.2. Full solution for ion response

In figure 2, we present the colour contour plot of the full per
turbed ion distribution function f i in the x − ξ  plane obtained 
by solving equation  (34) numerically for ν∗ = 0.01. The 
Boltzmann factor with the perturbed electrostatic potential 
is included in the plot. This has been determined via quasi
neutrality, using the electron response derived in the previous 
section. The solid lines are contours of constant S, while the 
dashed line indicates the location of the magnetic island sepa
ratrix. The plot clearly shows that the colour contours of f i are 
wellaligned with the contour lines of S, and they are radially 
shifted relative to the island separatrix. This indicates that f i is 
indeed a function of S to leading order, and the radial shift of 
the profile is O(ρθi), as expected. As described in the previous 
subsection, the equal and opposite shifts for σ = ±1 have 
a significant consequence for the radial density profile. As 
shown in figure 3, flattening of the density gradient inside the 
magnetic island is wellpreserved for ρθi � w but is almost 
absent for ρθi ∼ w. The restoration of the density gradient 
across the magnetic island is precisely the result of the shift in 
the drift islands; because the flat spots in the shifted distribu
tion functions for σ = ±1 no longer align when w ∼ ρθi, the 

summation over σ causes the gradient to be maintained across 
the island. Specifically, the σ = +1 solution for f i has a gra
dient where the σ = −1 solution is flattened, and vice versa 
(see figure  4). On the other hand, if ρθi � w, then the flat 
regions for σ = ±1 do align to a large extent and the density 
gradient is flattened inside the magnetic island, as expected.

Figure 1. Colour contour plot of S structure in the x − ξ  plane, 
in the absence of perturbed electrostatic potential. Dashed line 
indicates the position of the magnetic island separatrix.

Figure 2. Colour contour plot of the full ion distribution function 
f i in the x − ξ  plane, with magnetic island separatrix (dashed) 
and contours of constant S (solid lines). The Boltzmann factor in 
the distribution and the electrostatic potential term in S are both 
included. There is a good agreement between the profiles of f i and 
S, confirming the collisionless limit prediction of fi(pφ, ξ) = fi(S).

Figure 4. Schematic drawing depicting the radial shifts of the 
ion distribution function resulting in the restoration of the density 
gradient. When the distribution functions with σ = ±1 are summed 
over σ, the radial gradient of the density moment is sustained, when 
w ∼ ρθi.

Figure 3. Ion density profile for w/r  =  0.02, ρθi/w = 0.1 (blue) and 
ρθi/w = 1.0 (red) across the island Opoint (ξ = 0). Even for small 
ρθi  there is a partial restoration of the flattened density gradient, and 
the flattening is almost entirely gone for ρθi ∼ w.
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For electrons, the strong parallel flow tends to keep the 
density flattened across the magnetic island width, even for 
small islands (i.e. ρθi ∼ w, but ρθe � w). However, the elec
tron distribution function depends on the electrostatic poten
tial as well, in such a way as to satisfy quasineutrality. This 
selfconsistent potential influences both the electrons and ions. 
Therefore the full density, including the Boltzmann factor, 
takes the form given in figure 3 for both ions and electrons. 
This physics has consequences for the structure of the electro
static potential (figures 5 and 6). When ρθi � w, the potential 
is constant on the perturbed flux surfaces, as expected from 
previous theories. However, when ρθi ∼ w, this is no longer 
the case. Furthermore, the region inside the island retains a 
substantial potential gradient, consistent with the picture 
described above. The same is true for the ion parallel flow 
profile, as shown in figure 7. For large islands, the flow is a 
perturbed flux quantity, with a well defined boundary layer 
flow in the vicinity of the island separatrix. Conversely, for a 
small island the flow is no longer constant on the flux surfaces, 
and the boundary layer structure is completely lost.

5. Contributions to island evolution

We now have all the elements to consider the contribution to 
the island evolution originating from the perturbed current, 
localized in the vicinity of the rational surface, ∆′

loc. We dis
tinguish the bootstrap current contribution from other sources 
such as the neoclassical polarization current by defining it as 
the component of the total current that is constant on the per
turbed flux surfaces. The bootstrap current can then be pro
jected out by:

〈
J‖
〉
Ω
=

1
B0

∑
j

njej
〈〈

Bu‖j
〉
θ

〉
Ω

, (35)

where 〈...〉Ω is given by equation  (21). In previous analytic 
works [14, 17], this 

〈
J‖
〉
Ω

 is interpreted as solely consisting 
of the flux surface average of the perturbed bootstrap current. 
Here, however, when the island is small (i.e. w � ρθi) there is 
an additional contribution that cannot be explained purely in 
terms of the standard bootstrap current picture, as described 
later. Therefore we refer to it as the localized current perturba
tion, with its contribution to the island evolution labelled as 
∆′

loc. It is calculated from the dispersion relation derived from 
Ampère’s law:

∫ ∞

−∞
dx

∮
dξ

〈
J‖
〉
Ω
cos ξ =

c
32

w2

Lq

B
Rq

∆′
loc. (36)

Figure 8 shows the results for ∆′
loc normalised to 

βθ = 2µ0p/B2
θ as a function of w for a range of values of 

ρθi . For large w � ρθi, ∆′
loc tends to the asymptotic value 

(lim ρθi/w → 0) expected from previous analytic theories 
for the bootstrap drive [2, 14], which is represented by the 
dashed line. However, for small island widths approaching the 
size of ρθi , we see that the impact of the shifted drift islands is 
to reduce the bootstrap drive. For even smaller island widths, 
∆′

loc becomes negative. This is a rather remarkable result, as 

Figure 5. Colour contour plot of the normalised electrostatic potential Φ̂ in the x − ξ  plane, for ρθi/w = 0.1 (left) and ρθi/w = 1.0 (right). 
Solid lines indicate the position of the island separatrix.

Figure 6. Plot of the electrostatic potential radial gradient against 
x across the island Opoint. A substantial potential gradient is 
maintained across the island width.
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it means that the effect of the current perturbation is to heal 
the island and therefore represents new threshold physics 
that cannot be explained by a reduced bootstrap drive alone. 
For larger ρθi , the peak value in ∆′

loc decreases substantially, 

hence suppressing the bootstrap drive for the island growth. 
The critical island width, wc, where ∆′

loc passes through zero, 
increases linearly with ρθi : it can be fitted by wc � 2.76ρθi 
(see figure 9). Experimental observations support this linear 
relationship [26], though the coefficient we derive is some
what larger than the result obtained from experiments.

We now consider the physics underpinning the stabiliza
tion of small islands, w � ρθi. Figure  10 shows the plots of 
ρθi ×∆′

loc/βθ versus w/ρθi, with separate ion and electron 
contributions. It is clear that all cases with different ρθi/r values 
condense onto a universal set of curves for both the ion and elec
tron contributions. This is a consequence of the parallel flows 
being proportional to ρθi,e, as predicted by analytic neoclassical 
theory. An important point to address is that, as w → 0, the ion 
contribution to ∆′

loc tends to zero. This is consistent with the 
density gradient (and therefore bootstrap current) being unper
turbed in this limit (as found in the PIC simulations of [27]). 
Indeed, we expect that when the island width is much less than 
the ion banana width, the ions will average over the perturbed 
electromagnetic fields associated with the island. Electrons still 
respond to the perturbed fields, and we see from figure 10 that 

Figure 7. Colour contour plot of the ion parallel flow u‖i on x − ξ  plane, for ρθi/w = 0.1 (left) and ρθi/w = 1.0 (right). Solid lines indicate 
the position of the island separatrix.

Figure 8. The contribution to the island evolution, ∆′
loc, normalised 

to βθ, as a function of of ŵ, for different values of ρθi . The black 
dotted line is the analytic result of [14] for the bootstrap current 
contribution, for which ∆bs ∝ 1/w.

Figure 9. Plot of wc versus ρθi . A straight line wc = 2.76ρθi is fitted 
to the data points, with an excellent agreement.

Figure 10. Plot of ρθi∆
′
loc/βθ, as a function of w/ρθi, for different 

values of ρθi . Red solid curves represent the total contribution, 
while green dash and blue dotted curves correspond to ion and 
electron contributions respectively.
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it is their response that provides the stabilizing contribution. We 
postulate that it is the response of the electrons to the electro
static potential, required for quasineutrality, that creates the 
stabilizing contribution to the current density.

6. Conclusion

We have presented a new drift kinetic theory for the response 
of ions to small, stationary magnetic island perturbations in 
a tokamak plasma, as well as the implications for the NTM 
threshold physics. The effect of finite particle orbit width is 
substantial. The radial profile of the perturbed ion distribu
tion function is shifted radially relative to the magnetic island. 
This implies that the distribution is no longer flattened across 
the magnetic island, but instead across a radially shifted drift 
island. This shift is important for small islands comparable 
to the ion banana width, in which case a pressure gradient 
is maintained inside the magnetic island, even if crossfield 
transport is neglected. The bootstrap current drive for the NTM 
is then suppressed, with the flows dominated by the electron 
physics. The response of the electrons to the perturbed elec
trostatic potential is such that it tends to heal islands of width 
w below a critical width wc, thus providing a threshold for 
NTM growth. We find that, in the absence of other effects, 
the critical island width scales linearly with ρθi : wc ∼ 2.76ρθi.

The new physics of the finite ion orbit width effect is impor
tant for a complete theory of the neoclassical tearing mode 
threshold and, in particular, for designing the NTM control 
system for ITER. For our theory to fully quantify the NTM 
theory, we need to address additional physics including the 
accuracy of the analytic electron response employed here, the 
finite ion Larmor radius effect, particularly in the vicinity of 
the island separatrix, as well as the impact of the island rota
tion that leads to the ion polarization current. Nevertheless, 
this work gives a new insight into the physics of small magn
etic islands and the NTM threshold.
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Appendix

In this appendix we describe in more detail the numerical 
solution method for the ion drift kinetic equation. The equa
tion for Ḡi , and hence h̄i, is given by equation (32). This is a 
3D integrodifferential equation in p̂ (normalised pφ), ξ and 
y  (normalised λ). v and σ are parameters of the equation. 
Writing out the terms in the collision operator (9) explicitly, 
the equation to be solved for h̄i is:

− m

[
p̂
L̂q

Θ(yc − y) + ω̂D − ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂x

〉

θ

]
∂h̄i

∂ξ

∣∣∣∣
p

+ m

[
ŵ2

4L̂q
sin ξ Θ(yc − y)− ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂ξ

〉

θ

]
∂h̄0

∂p̂

− ν̂iiρ̂θΘ(yc − y)
∂h̄0

∂p̂
− σv̂

2
ν̂ii

(1 + ε)

〈
y√

1 − yb

〉

θ

∂2h̄i

∂p̂2

− 2ν̂iiρ̂θy
∂2h̄i

∂p̂∂y
− ν̂ii

σv̂
(1 + ε)

〈
(2 − 3yb)√

1 − yb

〉

θ

∂h̄i

∂y

− 2
ν̂ii

σv̂
(1 + ε)y

〈√
1 − yb

〉
θ

∂2h̄i

∂y2 − 2ν̂iiŪ‖(Ḡ0)FMi

= −

[
ŵ2

4L̂q
sin ξ Θ(yc − y)− ρ̂θi

2

〈
1
v̂‖

∂Φ̂

∂ξ

〉

θ

]
ωT
∗i

ω∗i

n′

n
FMi,

 (A.1)
where differentials in y  are taken at constant p̂. The boundary 
conditions on h̄i are that its radial gradient ( p̂derivative) is 
zero away from the island (i.e. the perturbation is localized; 
only the equilibrium radial gradient is present away from the 
island), and that it is periodic in ξ. In y space, the requirements 
are that h̄i and its derivatives are finite in the deeply passing 
and trapped limits (y → 0 and y → ymax, respectively). In 
order to solve equation (A.1), we employ a ‘shooting’ method 
in y space, solving a 2D differential equation in p̂ and ξ for 
the solution vector h at each of the y  grid points.

Equation (A.1) can be linearised in y , and after introducing 
the finite differencing scheme for the y differentials, we can 
write the matrix equation for the solution vector hl at each of 
the y  grid point, y l:

Pl · hl+1 + Ql · hl + Rl · hl−1 = Dl, (A.2)

where Pl , Ql and Rl  are banded (largely tridiagonal) square 
matrices of order Nξ × Np describing equation (A.1), and Dl  is 
the right hand side vector (Nξ and Np  are the number of ξ and 
p̂ mesh points, respectively). The elements of these matrices 
consist of the appropriate coefficients of equation (A.1) and 
grid spacings ∆y, ∆p and ∆ξ (for y , p̂ and ξ grids respec
tively). For passing particles, the solution of equation  (A.2) 
can be written as a recursion relation:

h p
l = α p

l · h p
l+1 + β p

l , (A.3)

where α p
l  is a square matrix and β p

l  is a vector of the same 
dimension as h p

l . Then, the recurrence relations for α p
l  and 

β p
l  can be derived by combining equations (A.2) and (A.3):

α p
l = −M( p)−1

l · Pl,

β p
l = −M( p)−1

l ·
(
Dl − Rl · β p

l−1

)
,

 
(A.4)

where

M( p)
l = Ql + Rl ·α p

l−1.

Likewise, for trapped particles:

ht
l = αt

l · ht
l−1 + βt

l, (A.5)
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where, as for the passing particles, αt
l is a square matrix and 

βt
l is a vector. The recurrence relations in the trapped region 

are then:

αt
l = −M(t)−1

l · Pl,

βt
l = −M(t)−1

l ·
(
Dl − Pl · βt

l−1

)
,

 
(A.6)

where

M(t)
l = Ql + Pl ·αt

l+1.

Applying the y  boundary conditions at the grid edges allows us 
to determine α p

l=1 and β p
l=1 at the deeply passing end (y 1  =  0), 

and αt
l=Ny

 and βt
l=Ny

 at the deeply trapped end (yNy = ymax, 
Ny  is the number of y  grid points). Using the recurrence rela
tions (A.4) and (A.6), we can determine all the αl and βl, up 
to the trapped/passing boundary.

In principle, the solution vectors h p,t
l  can then be deter

mined using equations (A.3) and (A.5), given the solution at 
the boundary, hl=lc. This can be obtained using the matching 
conditions [14]:

∑
σ

σh̄ p
i = 0, (A.7)

∑
σ

h̄ p
i = 2h̄t

i, (A.8)

∑
σ

∂h̄ p
i

∂y
= 2

∂h̄t
i

∂y
. (A.9)

These conditions originate from the fact that h̄i must be 
continuous across the trapped/passing boundary while h̄t

i  
is independent of σ (equations (A.7) and (A.8), as well as 
matching the rates of scattering from passing to trapped 
orbits and vice versa (described by equation  (A.9)). 
Employing a quadratic fitting in the vicinity on each side 
of the trapped/passing boundary, the application of these 
matching conditions gives us the equation for the solution 
at this boundary, hc:

Mc · hc = Dc, (A.10)

with subscript c corresponding to the grid point at the 
boundary, and:

Mc =

(
A+

p + A−
p

)

2
− 2

(
α+

c−1 +α−
c−1

)

+ At −αc+1 + 3I,

Dc = −
(
B+

p + B−
p

)

2
+ 2

(
β+

c−1 + β−
c−1

)
− Bt + βc+1,

A±
p = α±

c−2 ·α
±
c−1, B±

p = α±
c−2 · β

±
c−1 + β±

c−2,

At = αc+2 ·αc+1, Bt = αc+2 · βc+1 + βc+2.

Here, subscript c  +  1 corresponds to the first barely trapped 
particle grid point (yc +∆y), c  −  1 the first barely passing 
grid point (yc −∆y), and so to.

Once hc is determined, then the complete set of solutions in 
passing and trapped regions can be calculated using the recur
rence relations (A.3) and (A.5).

A.1. Momentum conservation and quasi-neutrality

In order to determine the ion response accurately, it is crucial 
to ensure that the momentum conservation and quasineu
trality are imposed selfconsistently. The former is introduced 
as an additional term in the model collision operator (9): the 
term in ū‖(Ḡi). This is effectively a weighted parallel velocity 
moment of the ion distribution function, which adds a degree 
of nonlinearity. The term in ū‖i is determined by iterating 
over the calculation of h̄i, updating ū‖i each time until the 
solution is converged.

Quasineutrality is imposed by determining the perturbed 
electrostatic potential from ion and electron densities. Given 
the analytic solution for the electrons [14] summarized in sec
tion 3 and the form of the ion distribution function (23), the 
quasineutrality condition: ni � ne implies that:

eiΦ

Ti
=

δni/n0 + x − ĥ(Ω)
2Ln0

 (A.11)

Figure A1. Calculation flow chart outlining the essential steps. 
Numbers on the left point to the relevant equations in each step.
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assuming Ti = Te. Here, Ln0 is the equilibrium density gra
dient length scale, δni is the perturbation in the ion density 
calculated from h̄i, and

ĥ(Ω) = Θ(Ω− 1)
ŵ

2
√

2

∫ ∞

1

dΩ
Q(Ω)

,

Q(Ω) =
1

2π

∮ √
Ω+ cos ξ dξ.

The calculation for h̄i is iterated over until convergence is 
achieved for Φ, as well as ū‖i. The converged ion flow is then 
employed in the electron flow (22). More precisely, the itera
tion loop for converging ū‖i is nested inside the iteration loop 
for converging Φ. All the steps and flow of the calculations are 
outlined in the flow chart (figure A1).
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