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ABSTRACT

Numerical instabilities of standard Particle-In-Cell (PIC) codes were observed and explained very early in their development. In the
zero-time step limit, these instabilities arise from the interaction between the spatial grid and the (artificial) particle shape functions. df PIC
codes, which have recently been especially popular in gyrokinetic simulations, suffer from similar instabilities. In the zero time step limit, the
numerical stabilities of standard and df methods are equivalent. Numerical instabilities arise when the simulation grid does not “resolve the
Debye length,” but many modern PIC codes use relatively high order shape functions, and as a result, the worst-case numerical growth rates
are undetectably small; in addition, some codes use energy-conserving methods which usually prevent this numerical instability from arising.
Similarly, a numerical instability was found in a gyrokinetic df code using a first-order shape function; we show that this is related to the
usual PIC numerical instability. In the gyrokinetic case, where waves have acoustic dispersion at a large wavenumber, increasing the grid res-
olution actually increases the growth rate of the numerical instability, and the prescription of resolving an effective Debye length is not appli-
cable. However, using higher order shape functions is still an effective remedy.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139957

I. INTRODUCTION

The stability of Particle-In-Cell (PIC) codes has been explored
for historical schemes of various orders,1 for a df scheme,2 and with
modified current deposition schemes.3 Sufficiently small time steps
and spatial grid spacing, as well as a sufficient number of computa-
tional markers, are required for stable solutions of PIC algorithms. It is
often stated, for example, that PIC methods must resolve the Debye
length for stability, but in practice, modern PIC codes with high order
splines are often run with grids that very strongly under-resolve the
Debye length without obvious instability or numerical self-heating. In
the less well-explored case of gyrokinetic PIC simulation, the same
numerical issue arises:4 we explain the correspondence between
numerical stability in the usual Vlasov–PIC method and in
gyrokinetic-PIC simulations. As a first step, we will recap some of the
stability theory of PIC methods in the large-marker number limit. We
then demonstrate by direct numerical solution that standard and df
PIC simulations are subject to instabilities predicted by theoretical
analysis of the numerical scheme. This explains why a numerical insta-
bility was found in the study by Wilkie and Dorland:4 the instability is
in fact the usual numerical instability associated with the PIC method,
but in unfamiliar context.

II. THE GYROKINETIC AND STANDARD PIC PROBLEM

To explain the commonality between the different problems, we
translate the gyrokinetic problem into a form close to the 1D
Vlasov–Poisson system. For simplicity, we will treat the perpendicular
direction spectrally. The linearized continuum equations (4) and (5) in
Ref. 4 may be rewritten in a similar form to the conventional 1D
Vlasov–Poisson system, as

@f
@t
þ vjj

@f
@x
¼ e

Te
vjj
@F0
@v

@/
@x

; (1)

for the electron perturbed distribution function f and background dis-
tribution function F0 (the ion parallel motion is slow and may be
ignored), and

nik2?q2
i

2TiS2p
/ ¼ �

ð1
�1

fdvjj: (2)

Here, the perpendicular direction has been treated spectrally for sim-
plicity, and the factor S2p has been introduced to account for the use of
shape functions in the direction perpendicular to the field and we take
S2p ¼ 1 (this is appropriate when the perpendicular wavelength is long
compared to the grid spacing, which is the most problematic case).
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The notation can be simplified by normalizing the velocity to
vte ¼ ðTe=meÞ1=2, normalizing the potential to /0 ¼ e=Te, time by
1=vte, and scaling the distribution function by the background density
n, to give

@f
@t
þ v

@f
@x
¼ v

@F0
@v

@/
@x

(3)

and

/ ¼ �f20

ð1
�1

fdv; (4)

with f0 ¼ 1=k?qi (note that x is not normalized). Interestingly, there
is no characteristic parallel length scale or timescale in this problem. In
the cold-plasma limit, solutions to this problem are acoustic waves
with dispersion x2 ¼ f20k

2. This system of equations is equivalent to
the problem studied in Ref. 2, of ion-acoustic waves (with PIC ions
and adiabatic electrons), where the electric potential is proportional to
the (numerical) ion density perturbation, but with ions and electrons
swapping roles.

These problems are only slightly different to the usual electron
plasma wave problem (considered by Ref. 1) where for velocity in units
of vte and x in units of the Debye length, the equation for the (non-
dimensionalized) field / is replaced by

@2/
@x2
¼
ð1
�1

fdv: (5)

For this problem, a characteristic length scale (the Debye length) and
timescale (plasma wave inverse frequency) appear.

III. THE PIC METHOD IN THE LARGE-MARKER NUMBER
LIMIT
A. Standard PIC

The standard PIC method uses a set ofMmarkers at positions xi
and velocities vi with weights wi. We can define a simulation distribu-
tion f via ð

C
fdxdv ¼

X
i

ð
C
widðx � xiÞdðv� viÞdxdv; (6)

in the large-M limit for any region C of phase space. At this point, this
simply serves as a definition of the distribution f, but this can be shown
to satisfy a modified Vlasov equation, and with an appropriate initial
condition, thereby model the time-evolution of a plasma. We will ana-
lyze the PIC method for a single species to simplify the notation,
assuming that a neutralizing background is present to ensure quasi-
neutrality of the unperturbed plasma.

In the standard PICmethod, the electric field �Ej (i.e., used for cal-
culating marker acceleration) at position x is evaluated using

�EðxÞ ¼
X
j

EðxjÞSðx � xjÞ; (7)

with EðxjÞ the electric field stored at evenly spaced grid positions
xj ¼ jdx, and S a “Shape function,” which is a narrow compact sup-
port function, with the property

P
Sðxj � xÞ ¼ 1 for all x. Usually S is

monotonically increasing to some peak value at x¼ 0, and symmetric
about x¼ 0.

“Energy-conserving” PICmethods use

�EðxÞ ¼ �
X
j

/ðxjÞ
@

@x
Sðx � xjÞ; (8)

but will not be discussed in detail: note that the numerical electric field
is exactly minus 1 times the spatial derivative of the potential. The
principle of such schemes is that the numerical method is derived
based on a system Lagrangian,5 and this directly implies conservation
of energy due to time-symmetry (but not momentum conservation
because the grid removes the continuous translation symmetry). The
energy-conservation property allows one to show that they will not be
subject to the numerical instability under discussion6 if the back-
ground plasma is stationary: significant instability is still however pos-
sible for a plasma with drift comparable to the thermal speed. Note
that energy-conserving methods have been used effectively in the con-
text of gyrokinetic simulation for some time.7

The charge associated with each grid point (“charge deposition”)
is then defined using

nj ¼
1
dx

X
i

Sðxj � xiÞwi; (9)

and the Poisson equation at point jmay be defined using

�0
@

@x
E

� �
j
¼ qnj: (10)

Some kind of numerical approximation is required to define the spatial
derivative on the left-hand side, and a simple one is to use a spectral
treatment @=@x ¼ ik, which is what we do here. Other choices will
lead to an effective (wavelength-dependent) change to the coupling
coefficient �0 by a factor of order unity.

In the large marker-number, zero-time step limit, standard
kinetic theory can be used to find the numerical Vlasov equation, for
the distribution of markers g in the simulation, that represents the
number of markers per unit phase space volume. The usual Vlasov
equation with a modified electric field

@g
@t
þ v

@g
@x
þ q�E

m
@g
@v
¼ 0; (11)

is recovered in the nonrelativistic limit. For general weights wi, we have
f ¼ ghwii (the average is over small regions of phase space in the large
marker-number limit), but in the usual case where marker weights are
constant we have N0g ¼ Mf , where N0 ¼

Ð
ndx is the total number of

plasma particles. We rewrite, and then solve, these equations in terms
of the more familiar plasma distribution function f in the remainder of
the paper. Because of the PIC grid, this equation only has a discrete
translational symmetry, rather than a continuous one.

The charge density becomes

nj ¼
1
dx

ð
Sðx � xjÞf ðx; vÞdxdv; (12)

and this is used to evaluate the electrostatic potential using the Poisson
equation.

B. df PIC

In the df method, we have f (the numerical distribution function)
defined as
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ð
C
fdxdv ¼

ð
C
f0dxdvþ

X
i

ð
C
widðx � xiÞdðv� viÞdxdv; (13)

on any region C, where f0 may have general time and space depen-
dence, but will be chosen to be a spatially and temporally uniform
Maxwellian here. We define df ¼ f � f0. The markers are taken to
nominally represent a nearby phase space of fixed volume Xi, which is
initialized toXi ¼ 1=g when markers are loaded, and for marker load-
ing proportional to the background distribution Xi ¼ N0=Mf0. The
weight evolution equation is

dwi

dt
¼ �Xi

df0
dti
; (14)

where the convective derivative is associated with the trajectory of
marker i.

As has been previously stated,2 the numerical Vlasov equation
(found in the zero-time step limit) for standard and delta-f PIC is
equivalent; a derivation of this result is given in Appendix A. In short,
all that is required is for the background distribution evaluated using
the markers to cancel the analytical evaluation. Both methods satisfy a
modified Vlasov equation, and at wavelengths long compared to the
spatial grid, the modified numerical Vlasov equation is equivalent to
the electrostatic Vlasov equation of physical interest.

IV. STABILITY OF THE PIC METHOD

We now consider the analytical theory for the stability of PIC
methods in the large-marker number and zero-time step limit. This is
approached by linearizing the numerical Vlasov equation, about an
initially spatially homogeneous state with E¼ 0. As usual, we take a
Maxwellian background distribution f0 / exp ð�mv2=2TÞ. A plane
wave disturbance with wavelength k of the electric field is considered
so Ej ¼ ~E exp ðixjkÞ. The numerical Vlasov equation may then be
solved, with the splitting f ¼ f0 þ f1 and linearizing to find an equa-
tion for f1. We are working with f rather than g since the distinction is
not relevant in the infinite-marker number limit.

Note that due to the shape functions, the markers are not subject
to a plane wave electric field, but (normally) a piecewise-polynomial
approximation to a plane wave; the Fourier transform of this piecewise
polynomial involves not just the wavenumber k but also “alias waves”
at periods kþ n2p=dx, for integer n. This resulting distribution func-
tion f1 is then inserted into the numerical Poisson equation, and the
normal modes of the numerical system are then found. That is, con-
ceptually, what we are doing for the numerical system is equivalent to
solving the warm-plasma dispersion relation of a real plasma.

This analysis is found in classic texts1 as well as more recent
papers and we don’t repeat it in detail. Reference 2 gives analytical
expressions for the dielectric response � of a Particle-In-Cell numerical
plasma, which gives the (Fourier coefficient) of the density response
for a given potential field, and is defined usingð

dvf ¼ dn ¼ �ðk;xÞ/: (15)

We will specialize to the zero-time step limit, in which case, both Eqs.
(53) (for the df dielectric response) and (55) (for the full-f dielectric
response) of Ref. 2 simplify to

�ðk;xÞ ¼ �k
X
q

SðkqÞ2
ð
dv
@f0
@v

1
x� kqv

; (16)

the sum over all integers q, kq ¼ kþ 2pq=dx, and

SðkÞ ¼ sin ðkdx=2Þ
kdx=2

� �Nþ1
: (17)

Here, dx is the grid spacing and N is the order of the particle shape
spline function. The existence of a single numerical dispersion relation
is sufficient to show that full-f and dfmethods are numerically equiva-
lent in terms of stability in the zero-time step limit. �ðk;xÞ differs
from the continuum dielectric response due to the inclusion of “alias”
waves at wavenumber kq, which occur because the field the particles
see is not an exact sine wave, but a piecewise polynomial approxima-
tion to a sine; this can be decomposed into a set of Fourier modes
indexed by q. The resonance of particles with these alias wave veloci-
ties can be seen as the cause of unphysical mode growth or damping
in the PIC method.

Reference 2 uses these expressions for � to solve the numerical
dispersion relation for a specific ion-acoustic model, and find that sta-
bility decreases as the ratio f0 of the ion acoustic wave speed to the ion
thermal speed increases: for the range of parameters explored in that
reference, the numerical plasma was always stable at zero time step,
but if they had explored a slightly higher f0 they would have seen a
zero-time step numerical instability (note however that the growth
rate peaks at finite f0 and asymptotes to zero for f0 !1, so the cold-
ion limit is stable as expected). The issue (both for ion acoustic waves
and electron plasma waves) is that waves propagating much faster
than ion thermal velocities are not subject to physical damping, so
small amounts of unphysical drive (due to numerical aliasing) result in
a numerical instability. In the gyrokinetic case, there will normally be
xH modes in the system that propagates much faster than the electron
thermal velocity, which allow this numerical instability.

For the 1D Vlasov–Poisson equation with a neutralizing fixed
ion density, the numerical dispersion relation in normalized units can
be written, using the Poisson equation,�k2/ ¼ dn, and Eq. (16) as

0 ¼ XVPðk; f; kdxÞ ¼ 1þ 1
k2
X
q

sin ðkdx=2Þ
kdx=2þ qp

� �2Nþ2

�
ð
dv
@f0
@v

1
f� v 1þ 2pq=kdx½ � ; (18)

where f ¼ x=k is the numerical wave speed. For the gyrokinetic and
ion-acoustic problems, where we have / ¼ �f20dn, the numerical dis-
persion relation is found using Eq. (16) as

0 ¼ XGKðk; f; kdxÞ ¼ 1þ f20
X
q

sin ðkdx=2Þ
kdx=2þ qp

� �2Nþ2

�
ð
dv
@f0
@v

1
f� v 1þ 2pq=kdx½ � : (19)

The numerical gyrokinetic (GK)/ion-acoustic relation has the some-
what special property of being a function of wave phase speed f and
grid-normalized wavenumber (kdx) only. This is a consequence of the
absence of a characteristic spatial scale in the GK/ion-acoustic prob-
lem, so only the grid scale appears.
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These dispersion relations only differ in the prefactor multiplying
the sum. Thus, given a solution XGKðk; f; kdxÞ ¼ 0 for some f0 we
have XVPð1=f0; f; kdxÞ ¼ 0. Note that this explains the fact15 that the
numerical instability growth rate in the GK simulations is inversely
proportional to the grid spacing: solutions of this dispersion relation
for the most unstable value of kdx, have fixed f ¼ x=k and the growth
rate ImðxÞ therefore scales like 1=dx. This contrasts with the usual sit-
uation in 1D Vlasov–Poisson simulations, where the unphysical insta-
bilities may be suppressed by reducing dx (resolving the Debye length).

These dispersion relations may be directly numerically evaluated
(for growing modes with ImðxÞ > 0) to find any numerical instabil-
ities, and we will do this later for a particular case. Approximate ana-
lytical expressions may also be found for waves with f� 1 and under
the assumption that SðkqÞ � SðkÞ for q 6¼ 0; the real part of the
dispersion relation is then dominated by the cold-ion response (in
the q¼ 0 term) and the growth rates are found as a correction due to
the other terms in the sum (mostly q ¼ 61), in the small growth rate
limit. This identifies the growing waves as standard plasma waves,
modified slightly by numerical aliasing, and with frequencies reduced
slightly due to smearing out of the particle-field interaction by the
shape function. For higher order shape functions, the q¼ 0 term
becomes even more dominant and growth rates of this numerical
instability rapidly decrease.

V. NUMERICAL RESULTS FOR CONVERGED
AND NON-CONVERGED SIMULATIONS

To demonstrate the numerical instability in PIC simulations, and
how it may be avoided, we run 1D Vlasov–PIC simulations (in the
non-relativistic, electrostatic limit) using the EPOCH code,10 which
has recently been extended to allow df simulations. The code defaults
to using third-order shape functions, partly to avoid exactly this kind
of instability (this appears to be a standard practice for modern PIC
simulations in laser-plasma applications) but can be set to use first-
order splines for testing purposes. EPOCH uses a leapfrog-time time-
integration and an Esirkepov-type current deposition scheme11 (this is
an extension of the Villasenor–Buneman12 approach to higher-order
shaper functions) and is thus somewhat different to historical PIC
algorithms. We also wrote a very simple PIC code to check that these
results are insensitive to using the historical methods of Ref. 1 instead
of Esirkepov current deposition: the full-f simulation was run using
this code. A time step txpe ¼ 0:1 was used.

We run full-f and df cases, with both first and third order splines,
for the nominal parameters of Ref. 4, with number of grid points Nx

¼ 4 and dx ¼ 10kde. The full-f case is run with 107 markers and other-
wise, 105 markers are used. We also run simulations with Nx¼ 40, but
the same simulation length, so the grid spacing is ten times smaller,
and dx ¼ kde. Plasma waves are initialized using a sinusoidal velocity
perturbation of magnitude 10�4vth, where vth is the thermal velocity.
Physically, the linear damping mechanism is a resonance with particles
traveling at the wave phase speed, which is �10vth: the Maxwellian
distribution function is essentially zero there so the correct damping
rate is effectively zero. We plot the time-evolution of the mean squared
electric field (Fig. 1), which oscillates with twice the plasma frequency
as we have initialized a standing wave.

For both full-f and df , a numerical instability for the mode
kdx ¼ p=2 with a growth rate of 0:01xpe is found for the first-order
splines but with third-order splines, the wave has a small positive

damping rate of 0:002xpe. The simulation with first order splines but
increased resolution has a very small positive damping rate of
5� 10�4xpe. The frequencies measured in the PIC simulations are all
somewhat different to the correct wave frequency which is to be
expected since the wave is mostly poorly resolved by the grid.

The full-f simulations have nearly identical behavior to the df
simulations, demonstrating that the instability here and in Ref. 4 is not
a particularity of the df method. Normally numerical self-heating1,10 is
observed in PIC simulations rather than the numerical instability pre-
dicted from linear stability analysis, but only two modes are present in
this simulation, and we are using an unusually large number of
markers per cell, four orders of magnitude larger than in typical PIC
simulations. In general, the noise in a conventional PIC simulation
would hide these fairly subtle numerical instabilities, in addition to
potentially hiding actual physical instabilities that are of interest, but
for this very small test case, the instability is clear. To see this instabil-
ity cleanly in standard PIC, even with millions of markers per grid cell,
a quiet-start is required: little growth of the mode is seen in the “noisy
start” simulation, as the instability saturation level is not much higher
than the initial noise level.

Translated into the units of Ref. 4, the growth rate for the Nx ¼ 4
case with first order shape functions is 1:0cs=a, which is about a factor
of two lower than the growth rate found there: the reason for the dif-
ference is unclear, but some difference might be expected due to the
1D rather than 2D discretization (or equivalently, the spectral treat-
ment of the perpendicular direction).

A comparison between PIC results and the analytical formula
[Eq. (18)] for instability is also made for the case dx ¼ 10kde, with first
order splines, and 100 simulation grid points. We examine the wave-
number dependence of the instability by isolating a single Fourier
component of the potential, setting all other modes in the simulation

FIG. 1. Mean squared electric field amplitude vs time for a plasma oscillation in
simulations of a 1D Vlasov–Poisson system. The standard PIC simulation is labeled
with a red curve. The df simulations have blue and black traces, using first and
third order splines, respectively. The spline order is denoted os. A simulation with
first order splines and Nx ¼ 40 so that the grid resolves the Debye length is also
shown (green trace).
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to zero at each time step. The agreement between the analytical theory
and the PIC result curve in Fig. 2 is generally excellent. We also plot
the analytically predicted growth rate of the numerical instability for a
PIC simulation with third order splines (scaled by a factor of 100):
these growth rates are close enough to zero that they are negligible for
most practical purposes.

Note that Ref. 4 also find that using splines for charge assignment
of one order higher than for the field interpolation removes the insta-
bility (in the case of Ref. 4, method C, using piecewise-constant fields):
this is a so-called energy-conserving method1 known to have favorable
stability properties for a cases near an un-shifted Maxwellian. Energy-
conserving methods are thus a natural choice for gyrokinetic PIC sim-
ulation7 where the plasma is near-stationary and near-Maxwellian.
Various other methods exist to avoid this numerical instability, but
these have certain limitations. The solution favored by modern PIC
simulations is generally to either resolve the (effective) Debye length
or use higher-order splines. We have shown that both of these almost
completely suppress the numerical instability for Vlasov–Poisson.
Higher order splines will also suppress the instability in the gyrokinetic
formalism. On the other hand, higher resolution in the parallel direc-
tion actually increases the numerical instability growth rate for gyroki-
netic simulations: resolving the Debye length translates into a
condition that is not possible to satisfy in the gyrokinetic simulations.

It should also be possible to effectively suppress the numerical
instability in the gyrokinetic case by increasing the parallel resolution
and filtering grid-scale modes (method D in Ref. 4) even for first order
splines the instability growth scales like k4 (see Sec. III B), so a rela-
tively weak filter should suffice. An additional issue we have not con-
sidered here but which has generally led to poor performance of
electrostatic gyrokinetic PIC codes when electrons are treated kineti-
cally is that the maximum time step possible also tends to decrease

with system size, in order to resolve the (usually physically uninterest-
ing) xH mode. Recent kinetic electron simulations have therefore
largely been performed including electromagnetic codes, where this
additional numerical issue is much less severe.

VI. CONCLUSION

“Resolving the Debye length” is a common prescription for
avoiding numerical instability in standard PIC simulations, but stan-
dard PIC codes are often run in regimes where this condition is vio-
lated, and the analogous condition in gyrokinetic simulation cannot be
met by refining the spatial grid. We have shown that the numerical
instabilities in both standard and df PIC codes, at least in the small
time step limit, may be massively reduced by using smoother, higher
order shape functions, and partly as a result, most modern PIC codes
use higher order splines. There is, however, always a small residual
numerical instability (see Appendix B), but for third order splines, the
growth rates are more than one thousand times lower than the plasma
frequency, and this is undetectable in massively over-resolved simula-
tions carefully designed to examine this instability. It is generally a
good idea to implement variable-order splines when building a PIC
code (or at least two different orders of spline) in order to tune for
maximum performance, and this allows a straightforward way to test
whether these tiny remnant instabilities are relevant. In the gyrokinetic
context, PIC codes typically use higher (normally at least second)
order splines and energy conserving methods, and include electromag-
netic effects13,14 (which frustrate the instability by limiting the parallel
wave speed to the Alfv�en velocity, which is typically much lower than
the electron thermal speed). In order to not just reduce the growth
rate to undetectable levels but to remove the instability entirely, code
authors should consider adding electromagnetic effects and using
energy-conserving methods in new and existing codes.

APPENDIX A: DERIVATION OF THE NUMERICAL
VLASOV EQUATION FOR THE DELTA-F PIC
METHOD

As for physical plasmas, a statistical theory of the behavior of
the numerical markers may be derived. For the standard PIC
method, this leads to an equation for the modeled distribution f,
which may be extended to consider finite-particle number effects.9

We present an outline of how the numerical Vlasov equation asso-
ciated with the df method may be obtained. The steps are mostly
completely analogous to the way the Vlasov equation is derived
from many-body classical mechanics for physical plasmas.
Essentially, this boils down to counting the number of markers
entering and leaving a phase-space box, deriving a number density
conservation equation, and using phase space conservation to
express this in the form of Vlasov’s equation.

We now follow the standard procedure for transforming parti-
cle equations to equations for distributions in the large marker-
number limit, to show that a numerical equation still applies for df
PIC simulations. With the same trajectory equations as for standard
PIC, and for a given field E, in the infinite-marker number limit, we
have (for a phase space volume K and time interval s giving an inte-
gration volume C ¼ Ks)

FIG. 2. Growth rate of the numerical PIC instability vs wavenumber, based on the-
ory for first order splines (blue curve), PIC simulations using first order splines (red
curve) and theory for third order splines (black curve, value scaled by a factor of
100 to make it visible on this graph). Numerical instabilities were too small to be
detected in simulations with third order splines.
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ð
C
dV

@f
@t
¼
X
i

ð
C
dV

dwi

dt
þwi

dxi
dt

@

@xi
þwi

dvi
dt

@

@vi

� �
dðx�xiÞdðv�viÞ;

after substituting in Eq. (13), where dV ¼ dxdvdt. We then can use
the chain rule to show @af ða� bÞ ¼ �@bf ða� bÞ, and since the
delta function is zero except where x ¼ xi and v ¼ vi, we haveð
C
dV

@f
@t
¼
X
i

ð
C
dV �Xi

df0
dt
�wi

dx
dt
@

@x
�wi

dv
dt
@

@v

� �
dðx�xiÞdðv�viÞ;

(A1)

where the equations of motion are now evaluated using the integra-
tion variables. At this point, we may move the sum into the integral
(we are assuming uniform convergence) to findð

C
dV

@f
@t
¼ �

ð
C
dV

df0
dt

X
i

Xidðx � xiÞdðv� viÞ½ �

�
ð
C
dV

dx
dt

@

@x
þ dv

dt
@

@v

� �X
i

widðx � xiÞdðv� viÞ½ �:

(A2)

We then use integration by parts to rewrite the second integral as a
divergence: because the equations of motion have a Hamiltonian
character, the divergence of these zero. The second term may then
be written using Gauss’s law as the surface integral of a flux, and
because a the number of markers entering or leaving this volume
over a finite time-interval is large in the large-particle-number limit,
the limit of this surface integral is well-posed. We then use the defi-
nition of df in the large marker number limit to rewrite this term in
a continuum form.

The first term on the RHS of Eq. (A2) involves the sum of Xi

on the phase space volume: this is the sum of the nominal phase
space volume associated with the relevant markers. Due to phase-
space incompressibility, one can show thatð

C
dV
X
i

Xidðx � xiÞdðv� viÞ½ � ¼
ð
C
QdV; (A3)

in the large marker-number limit, with Q¼ 1 (the proof is by deriv-
ing a Vlasov equation for Q, which is initially unity and uniform,
and is therefore always equal to 1). Phase-space conservation is a
real requirement to ensure correct sampling, and hence accurate df
PIC simulations, and not just used to simplify the derivation.

Then, taking the region C to be small (i.e., a short time/phase
space interval), we may assume df0=dt, dv/dt, and dx/dt to be
replaced by their averages on C, and taken out of the integral,ð

C
dV

@f
@t
¼ �

ð
C
dV

df0
dt
þ dx

dt
@df
@x
� dv

dt
@df
@v

: (A4)

Using f0 ¼ f � df , and evaluating the full derivative term-by-term,
we then have ð

C
dV

@f
@t
¼ �

ð
C
dV

dx
dt
@f
@x
� dv

dt
@f
@v
; (A5)

with dv/dt evaluated, as for standard PIC, using the numerical field
(see also the explanations in Aydemir8). Given an arbitrary but
small integration domain C, we then have the standard Vlasov

equation df =dt ¼ 0. Note, as in standard kinetic theory, the self-
consistent field depends on the particular configuration of markers
in the simulation, so a complete derivation needs to consider
EM ¼ E þ ~E , where E is the continuum limit of the field, and ~E is
the fluctuating field that becomes small in the large marker-number
limit. In a PIC simulation, ~E is normally referred to as “noise,” and
in a physical plasma, it is this fluctuation that gives rise to collisions.
The differing nature of discrete particle effects in PIC simulation
and in physical plasmas has been explored to some extent
elsewhere.9

APPENDIX B: ANALYTICAL ESTIMATES
FOR THE PIC NUMERICAL INSTABILITY

The dispersion relation [Eq. (53) in Ref. 2, which we have
reproduced for N¼ 1 as Eq. (15)] has the form

0 ¼ 1þ 1
k2
X
q

sin ðkqdx=2Þ2Nþ2

ðkqdx=2Þ2Nþ2
ð
dv
�@f0ðvÞ
@v

1
v� x=kq

: (B1)

Standard numerical techniques may be used to find the roots of this
dispersion relation, but in some limits more direct estimates may be
made.

We consider the limit k� 1 where the sum is dominated by
the q¼ 0 component (this is the interesting limit for numerical
instability as Landau damping stabilizes modes k� 1). We then
solve for the frequency at lowest order to find x0 ¼ j sin ðkdx=2Þ=
ðkdx=2ÞjNþ1. The imaginary part of the second term G may then be
evaluated using contour integration in the jImðxÞj � 1 limit as

G ¼ ip
X
q6¼0

signðqþ 1=2Þx
2
0

k
k
kq

 !2Nþ2
�@f0ðvÞ
@v

����
v¼x0=kq

; (B2)

and we have @f0=@v ¼ �v exp ð�v2=2Þ=
ffiffiffiffiffi
2p
p

.
This may directly be evaluated numerically, and the domi-

nance of the terms with small jqj means that few evaluations are
required for reasonable accuracy. Using k� 1, we have

G ¼ �i
ffiffiffi
p
2

r
x2

0

k
exp ð�1=2k2Þ

þ ipx2
0k

2Nþ2 dx
2p

X1
q¼1

@

@v
v2Nþ2

�@f0ðvÞ
@v

� ����
v¼x0dx=2pq

: (B3)

The physical damping term dominates for sufficiently large k
(k� 0:3), but a numerical instability exists for small k with a peak
at k � 0:2 for typical parameters. A good estimate of the growth
rate may be made by keeping only the q¼ 1 term.

If we can assume x0 � 1, the second term can be separated
into a power law dependence on k, and a term dependent on dx
with a narrow peak at dx � 10. Unfortunately, the peak growth rate
of the numerical instability occurs where the real dispersion is very
strongly affected by the shape function and x0 � 1, so for most
purposes a direct numerical evaluation is needed. Assuming x0 � 1
yields a worst-case growth rate

G � �i
ffiffiffi
p
2

r
1
k
exp ð�1=2k2Þ þ ik2Nþ2CN ; (B4)
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with C1 � 7 and C3 � 500. This worst-case estimate gives an incor-
rect estimate of order 1 for the maximum growth rate, but is useful
for bounding the instability growth rate in limiting cases with a
large grid spacing, or if a filter is used to remove the grid-scale
modes: the scaling with k2Nþ2 means that even a fairly unrestrictive
filter (for example, with a brick-wall low-pass Fourier filter) will be
effective in significantly suppressing the instability.

For the purpose of clarifying the extent of the numerical insta-
bility, we may also consider the small dx limit where we have
kq � 1 for q 6¼ 0, and after some manipulation, we find

G ¼ �i
ffiffiffi
p
2

r
1
k
exp ð�1=2k2Þ � 4k2Nþ2

dx
2p

� �2Nþ2X1
q¼1

q�ð2Nþ2Þ

8<
:

9=
;;
(B5)

and the growth rate of the numerical instability is G=2i. This
expression for numerical growth is not particularly accurate for the
worst-case scenario where dx � 10 and k � 0:2 but gives the cor-
rect scaling for smaller k and dx. The sum is dominated by the first
term, and the total value is the Riemann zeta function evaluated
with value ð2N þ 2Þ, which is almost exactly unity for N 	 1
because the first term dominates.
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